Author:
Osada K.,Ohara T.,Uno I.,Kido M.,Iida H.
Abstract
Abstract. Rapid Asian economic development might engender secondary impacts of atmospheric aerosol particles over the western Pacific after conversion of gaseous pollutants such as SO2. To elucidate changes in aerosol concentrations in leeward areas undergoing remarkable industrialization, the number-size distributions of submicrometer (0.3–1.0 μm) aerosols were measured at Murododaira (36.6° N, 137.6° E, 2450 m a.s.l.) on the western flank of Mount Tateyama in central Japan during January 1999–February 2009. Nighttime data obtained from 2400 to 0500 were used to analyze free-tropospheric aerosol concentration. Monthly average volume concentrations were calculated for months with >50% daily data coverage. Volume concentrations of submicrometer aerosols were high in spring to early summer and low in winter. Significant increasing trends at 95% confidence levels were found for volume concentrations in winter–spring. Simulated monthly anthropogenic aerosol concentrations at Mt. Tateyama from results of regional aerosol modeling with emission inventory up to 2005 showed seasonal variation and winter–spring increasing trends similar to those of observed aerosol concentration. According to the model analyses, the contribution of anthropogenic aerosol concentrations derived from China was high during winter–spring (60–80% of total anthropogenic aerosols at Mt. Tateyama). This accords with the increasing trend observed for winter–spring. Because SO42− is the dominant component of total anthropogenic aerosols, these results suggest that increasing anthropogenic emissions, especially for SO2, in China, engender enhancement of submicrometer-diameter aerosols over Japan during winter–spring.
Reference43 articles.
1. Akimoto, H.: Global air quality and pollution, Science, 302, 1716–1719, 2003.
2. Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model 1. Model description and preliminary results, J. Geophys. Res., 100(D12), 26191–26209, 1995.
3. Byun, D. W. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, 2006.
4. Carter, W.: Implementation of the SAPRC-99 chemical mechanism into the models-3 framework, Report to the United States Environmental Protection Agency, 29 January, 2000.
5. Collaud-Coen, M., Weingartner, E., Nyeki, S., Cozic, J., Henning, S., Verheggen, B., Gehrig, R., and Baltensperger, U.:, Long-term trend analysis of aerosol variables at the high-alpine site Jungfraujoch, J. Geophys. Res., 112, D13213, https://doi.org/10.1029/2006JD007995, 2007.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献