Modelling the impact of anthropogenic measures on saltwater intrusion in the Weser estuary

Author:

Kolb Pia,Zorndt Anna,Burchard HansORCID,Gräwe UlfORCID,Kösters FrankORCID

Abstract

Abstract. The Weser estuary has been subject to profound changes in topography in the past 100 years through natural variations and river engineering measures, leading to strong changes in hydrodynamics. These changes are also expected to have affected the dynamics of saltwater intrusion. Using numerical modelling, we examined saltwater intrusion in the Weser estuary in four different system states (1966, 1972, 1981, 2012). Models of each system state were set up with the respective topography and boundary values. We calibrated and validated each model individually to account for differences in sediments, bedforms, and the resolution of underlying bathymetric data between historical and recent system states. In simulations of 1 hydrological year, each with realistic forcing (hindcasting study), the influence of topography is overshadowed by the effects of other factors, particularly river discharge. At times of identical discharge, results indicate a landward shift of the salinity front between 1966 and 2012. Subsequent simulations with different topographies but identical boundary conditions (scenario study) confirm that topography changes in the Weser estuary affected saltwater intrusion. Solely through the topography changes, at a discharge of 300 m3 s−1, the position of the tidally averaged and depth-averaged salinity front shifted landwards by about 2.5 km between 1972 and 1981 and by another 1 km between 1981 and 2012. These changes are significant but comparatively small, since due to seasonal variations in run-off, the tidally averaged saltwater intrusion can vary by more than 20 km. An analysis of the salt flux through a characteristic cross section showed that saltwater intrusion in the Weser estuary is primarily driven by tidal pumping and only to a lesser degree due to estuarine circulation. However, results indicate that the contribution of individual processes has changed in response to anthropogenic measures.

Funder

Bundesanstalt für Wasserbau

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference47 articles.

1. Andrews, S. W., Gross, E. S., and Hutton, P. H.: Modeling salt intrusion in the San Francisco Estuary prior to anthropogenic influence, Cont. Shelf Res., 146, 58–81, https://doi.org/10.1016/j.csr.2017.07.010, 2017.

2. BAW: Mathematical Module SediMorph: Validation Document Version 1.1, Hamburg, https://wiki.baw.de/de/index.php/Mathematisches_Verfahren_SEDIMORPH (last access: 2 December 2022), 2005.

3. BAW: Historical digital terrain model data of the Weser Estuary (HIWEST), B3955.02.04.70168-6, Federal Waterways Engineering and Research Institute [data set], https://doi.org/10.48437/02.2020.K2.5200.0001, 2020.

4. BAW: Historical digital terrain models of the Weser Estuary (HIWEST). Technical Report B3955.02.04.70168-6, Federal Waterways Engineering and Research Institute, https://hdl.handle.net/20.500.11970/107521 (last access: 2 December 2022), 2021.

5. Becherer, J., Flöser, G., Umlauf, L., and Burchard, H.: Estuarine circulation versus tidal pumping: Sediment transport in a well-mixed tidal inlet, J. Geophys. Res.-Oceans, 121, 6251–6270, https://doi.org/10.1002/2016JC011640, 2016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3