Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers

Author:

Hardy Brieuc,Borchard Nils,Leifeld JensORCID

Abstract

Abstract. Black carbon (BC) plays an important role in terrestrial carbon storage and can sustainably improve soil fertility. However, the accurate quantification of BC remains critical to fully unravelling the functions and dynamics of BC in soil. In this study, we explored the potential of differential scanning calorimetry (DSC) to identify, characterize and quantify charcoal in the soil of pre-industrial charcoal kiln sites from various forest and cropland areas in Belgium and Germany. Pre-industrial charcoals and uncharred soil organic matter (SOM) demonstrated a distinct thermal signature that could be used to distinguish between them, with charcoal being more thermally stable than SOM. The DSC pattern of charcoals was characterized by one to three specific exothermic peaks, varying in size and position depending on soil conditions. Our data suggest that the thermal moieties within charcoal depend on the strength of chemical bonds of C atoms (increasing with the degree of aromatic condensation and decreasing with weathering) and on the activation energy required to initiate combustion. Despite the specific thermal features of charcoal, its decomposition spans a wide range of temperatures that overlaps with the thermal signature of uncharred SOM. This stresses the challenge of BC quantification in soil and hinders the use of cut-off temperatures to accurately quantify charcoal in soil. Therefore, charcoal-C content was estimated from the relative height of exothermic peaks, attributed either to the combustion of charcoal or SOM. For a selection of 45 soil samples, charcoal-C content estimated by DSC was compared to benzene polycarboxylic acid (BPCA) abundance, a widely used method to quantify BC in soil. The two methods correlated strongly (R2=0.97), with BPCA C representing about one-fifth of DSC-derived charcoal C. This reinforces the view that operationally defined BC content has an absolute quantitative value only if the recovery rate is controlled, which is very complicated for many case studies. Overall, our results demonstrate that dynamic thermal analysis is largely under-exploited despite providing quantitatively interpretable information across the continuum of SOM.

Funder

Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie

Fonds Spéciaux de Recherche

Publisher

Copernicus GmbH

Subject

Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3