Volume transport and mixing of the Faroe Bank Channel overflow from one year of moored measurements

Author:

Ullgren Jenny E.ORCID,Darelius Elin,Fer IlkerORCID

Abstract

Abstract. One-year long time series of current velocity and temperature from eight moorings deployed in the Faroe Bank Channel (FBC) are analysed to describe the structure and variability of the dense overflow plume on daily to seasonal timescales. Mooring arrays were deployed in two sections: located 25 km downstream of the main sill, in the channel that geographically confines the overflow plume at both edges (section C), and 60 km further downstream, over the slope (section S). At section C, the average volume transport of overflow waters ( < 3 °C) from the Nordic Seas towards the Iceland Basin was 1.3 ±  0.3 Sv; at section S, transport of modified overflow water ( < 6 °C) was 1.7  ±  0.7 Sv. The volume transport through the slope section was dominated by mesoscale variability at 3–5-day timescales. A simplified view of along-path entrainment of a gravity current may not be accurate for the FBC overflow. As the plume proceeds into the stratified ambient water, there is substantial detrainment from the deeper layer (bounded by the 3 °C isotherm), of comparable magnitude to the entrainment into the interfacial layer (between the 3 and 6 °C isotherms). A time series of gradient Richardson numbers suggests a quiescent plume core capped by turbulent near bottom and interfacial layers in the channel. At section S, in contrast, the entire overflow plume is turbulent. Based on a two-layer heat budget constructed for the overflow, time mean vertical diffusivities across the top of the bottom layer and across the interfacial layer were (30  ±  15) × 10−4 and (120  ±  43) × 10−4  m2 s−1, respectively.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3