Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
-
Published:2023-05-31
Issue:10
Volume:16
Page:3013-3028
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Klingmüller KlausORCID, Lelieveld JosORCID
Abstract
Abstract. Aeolian dust has significant impacts on climate, public health, infrastructure and ecosystems. Assessing dust concentrations and the impacts is
challenging because the emissions depend on many environmental factors and can vary greatly with meteorological conditions. We present a data-driven
aeolian dust scheme that combines machine learning components and physical equations to predict atmospheric dust concentrations and quantify the
sources. The numerical scheme was trained to reproduce dust aerosol optical depth retrievals by the Infrared Atmospheric Sounding Interferometer on
board the MetOp-A satellite. The input parameters included meteorological variables from the fifth-generation atmospheric reanalysis of the European
Centre for Medium-Range Weather Forecasts. The trained dust scheme can be applied as an emission submodel to be used in climate and Earth system
models, which is reproducibly derived from observational data so that a priori assumptions and manual parameter tuning can be largely avoided. We
compared the trained emission submodel to a state-of-the-art emission parameterisation, showing that it substantially improves the representation of
aeolian dust in the global atmospheric chemistry–climate model EMAC.
Publisher
Copernicus GmbH
Reference50 articles.
1. Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., and de Meij, A.:
Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties, Atmos. Chem. Phys., 12, 11057–11083, https://doi.org/10.5194/acp-12-11057-2012, 2012. a 2. Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.:
The digital revolution of Earth-system science, Nature Computational Science, 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021. a 3. Bristow, C. S., Hudson-Edwards, K. A., and Chappell, A.:
Fertilizing the Amazon and equatorial Atlantic with West African dust, Geophys. Res. Lett., 37, L14807, https://doi.org/10.1029/2010GL043486, 2010. a 4. Checa-Garcia, R., Balkanski, Y., Albani, S., Bergman, T., Carslaw, K., Cozic, A., Dearden, C., Marticorena, B., Michou, M., van Noije, T., Nabat, P., O'Connor, F. M., Olivié, D., Prospero, J. M., Le Sager, P., Schulz, M., and Scott, C.:
Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust, Atmos. Chem. Phys., 21, 10295–10335, https://doi.org/10.5194/acp-21-10295-2021, 2021. a 5. Clarisse, L., Clerbaux, C., Franco, B., Hadji-Lazaro, J., Whitburn, S., Kopp, A. K., Hurtmans, D., and Coheur, P.-F.:
A Decadal Data Set of Global Atmospheric Dust Retrieved From IASI Satellite Measurements, J. Geophys. Res.-Atmos., 124, 1618–1647, https://doi.org/10.1029/2018JD029701, 2019. a
|
|