Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model

Author:

Sakaguchi KoichiORCID,Leung L. RubyORCID,Zarzycki Colin M.,Jang Jihyeon,McGinnis Seth,Harrop Bryce E.,Skamarock William C.,Gettelman AndrewORCID,Zhao Chun,Gutowski William J.ORCID,Leak StephenORCID,Mearns Linda

Abstract

Abstract. Comprehensive assessment of climate datasets is important for communicating model projections and associated uncertainties to stakeholders. Uncertainties can arise not only from assumptions and biases within the model but also from external factors such as computational constraint and data processing. To understand sources of uncertainties in global variable-resolution (VR) dynamical downscaling, we produced a regional climate dataset using the Model for Prediction Across Scales (MPAS; dynamical core version 4.0) coupled to the Community Atmosphere Model (CAM; version 5.4), which we refer to as CAM–MPAS hereafter. This document provides technical details of the model configuration, simulations, computational requirements, post-processing, and data archive of the experimental CAM–MPAS downscaling data. The CAM–MPAS model is configured with VR meshes featuring higher resolutions over North America as well as quasi-uniform-resolution meshes across the globe. The dataset includes multiple uniform- (240 and 120 km) and variable-resolution (50–200, 25–100, and 12–46 km) simulations for both the present-day (1990–2010) and future (2080–2100) periods, closely following the protocol of the North American Coordinated Regional Climate Downscaling Experiment. A deviation from the protocol is the pseudo-warming experiment for the future period, using the ocean boundary conditions produced by adding the sea surface temperature and sea-ice changes from the low-resolution version of the Max Planck Institute Earth System Model (MPI-ESM-LR) in the Coupled Model Intercomparison Project Phase 5 to the present-day ocean state from a reanalysis product. Some unique aspects of global VR models are evaluated to provide background knowledge to data users and to explore good practices for modelers who use VR models for regional downscaling. In the coarse-resolution domain, strong resolution sensitivity of the hydrological cycles exists over the tropics but does not appear to affect the midlatitude circulations in the Northern Hemisphere, including the downscaling target of North America. The pseudo-warming experiment leads to similar responses of large-scale circulations to the imposed radiative and boundary forcings in the CAM–MPAS and MPI-ESM-LR models, but their climatological states in the historical period differ over various regions, including North America. Such differences are carried to the future period, suggesting the importance of the base state climatology. Within the refined domain, precipitation statistics improve with higher resolutions, and such statistical inference is verified to be negligibly influenced by horizontal remapping during post-processing. Limited (≈50 % slower) throughput of the current code is found on a recent many-core/wide-vector high-performance computing system, which limits the lengths of the 12–46 km simulations and indirectly affects sampling uncertainty. Our experience shows that global and technical aspects of the VR downscaling framework require further investigations to reduce uncertainties for regional climate projection.

Funder

Office of Science

Publisher

Copernicus GmbH

Subject

General Medicine

Reference165 articles.

1. Adler, R. F., Huffman, G. J., Chang, A., Ferrado, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D. T., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 – Present), J. Hydrometeorol., 4, 1147–1167, 2003. a

2. Allen, T., Daley, C. S., Doerfler, D., Austin, B., and Wright, N. J.: Performance and energy usage of workloads on KNL and haswell architectures, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10724 LNCS, 236–249, https://doi.org/10.1007/978-3-319-72971-8_12, 2018. a

3. Atmospheric Model Working Group: Atmospheric Model Working Group (AMWG) diagnostics package, Subversion Repository [code], https://www2.cesm.ucar.edu/working_groups/Atmosphere/amwg-diagnostics-package/index.html (last access: 18 May 2023), 2014. a, b

4. Atmosphere Model Working Group: CAM5.4: Final configuration AMWG diagnostic package, https://webext.cgd.ucar.edu/FAMIP/f.e13.FAMIPC5.f09_f09_beta17_cam5.4_alpha03.002/atm/f.e13.FAMIPC5.f09_f09_beta17_cam5.4_alpha03.002-obs/ (last access: 13 May 2023), 2015. a, b, c

5. Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C., Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014. a, b, c

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3