Asian Summer Monsoon Anticyclone: Trends and Variability

Author:

Basha GhouseORCID,Ratnam M. Venkat,Kishore PangaluruORCID

Abstract

Abstract. The Asian Summer Monsoon (ASM) dynamics act as a pathway for the transport of trace gases and pollutants both vertically (through convection) and horizontally (through low-level jet and tropical easterly jet). These pollutants will be trapped in the anticyclone present during the same period in the upper troposphere and lower stratosphere (UTLS). Since the anticyclone extends from the Middle East to East Asia, trapped pollutants are expected to make a large radiative forcing to the background atmosphere. Thus, it is essential to understand the anticyclone features in detail and its relation to long-term oscillations. This work explores the spatial variability and the trends of the Asian Summer Monsoon Anticyclone (ASMA) using observational and reanalysis data sets. Emphasis is made to investigate the temporal, spatial, and long-term trends of ASMA. Our analysis indicates that the spatial extent and magnitude of ASMA is greater during July and August compared to June and September. The decadal variability of the anticyclone is very large at the edges of anticyclone than at the core region. Significant deviations in the northeast and southwest parts of ASMA are also observed in the decadal variability with reference to 1951−1960 period. The strength of the ASMA shows a drastic increase from the easterlies to the westerlies in terms of temporal variation. Further, our results show that the extent of anticyclone is greater during the active phase of the monsoon, strong monsoon years, and during La Niña events. Significant warming with strong westerlies is observed exactly over the Tibetan Plateau during the active phase of the monsoon, strong monsoon years, and during La Niña events. Over the Tibetan Plateau, there is strong elevated heating from the surface to the tropopause, which is observed with strong westerlies during active and strong monsoon years. Our results support the transport process over Tibetan Plateau and the Indian region during active, strong monsoon years and during strong La Niña years. It is suggested to consider different phases of monsoon while interpreting the pollutants/trace gases in the anticyclone.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3