The value of remote marine aerosol measurements for constraining radiative forcing uncertainty

Author:

Regayre Leighton A.ORCID,Schmale JuliaORCID,Johnson Jill S.,Tatzelt Christian,Baccarini AndreaORCID,Henning Silvia,Yoshioka Masaru,Stratmann Frank,Gysel-Beer MartinORCID,Carslaw Ken S.ORCID

Abstract

Abstract. Aerosol measurements over the Southern Ocean are used to constrain aerosol-cloud interaction radiative forcing uncertainty in a global climate model. Aerosol forcing uncertainty is quantified using one million climate model variants that sample the uncertainty in nearly 30 model parameters. Ship-based measurements of cloud condensation nuclei, particle number concentrations and sulfate mass concentrations from the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE) are used to identify observationally implausible variants and thereby reduce the spread in the simulated forcing. Southern Ocean measurements strongly constrain natural aerosol emissions: default sea spray emissions in the model need to be increased by around a factor of 3 to be consistent with measurements. Aerosol forcing uncertainty is reduced by around 7 % using these measurements, which is comparable to the 8 % reduction achieved using an extensive set of over 9000 predominantly Northern Hemisphere measurements. The radiative forcing due to aerosol–cloud interactions (RFaci) is constrained to −2.61 to −1.10 W m−2 (95 % confidence) and the effective radiative forcing from aerosol-cloud interactions (ERFaci) is constrained to −2.43 to −0.54 W m−2. When Southern Ocean and Northern Hemisphere measurements are combined, the uncertainty in RFaci is reduced by 21 % and the strongest 20 % of forcing values are ruled out as implausible. In this combined constraint the observationally plausible RFaci is around 0.17 W m−2 weaker (less negative) with credible values ranging from −2.51 to −1.17 W m−2 and from −2.18 to −1.46 W m−2 when using one standard deviation to quantify the uncertainty. The Southern Ocean and Northern Hemisphere measurement datasets are complementary because they constrain different processes. These results highlight the value of remote marine aerosol measurements.

Funder

Deutsche Forschungsgemeinschaft

Ferring Pharmaceuticals

Newton Fund

National Centre for Atmospheric Science

Natural Environment Research Council

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3