Seasonal impact of biogenic VSL bromine on the evolution of mid-latitude lowermost stratospheric ozone during the 21<sup>st</sup> century

Author:

Barrera Javer A.,Fernandez Rafael P.,Iglesias-Suarez FernandoORCID,Cuevas Carlos A.,Lamarque Jean-FrancoisORCID,Saiz-Lopez AlfonsoORCID

Abstract

Abstract. Biogenic very short-lived bromine (VSLBr) represents, nowadays, ~ 25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (LLBr, e.g., halons) and chlorine (LLCl, e.g., chlorofluorocarbons) substances, the impact of VSLBr on ozone peaks at the extratropical lowermost stratosphere, a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical losses in extra-polar regions during the 21st century, under two different scenarios: considering and neglecting the additional stratospheric injection of 5 ppt biogenic VSLBr naturally released from the ocean. Our analysis shows that the inclusion of VSLBr result in a realistic stratospheric bromine loading and improves the quantitative 1980–2015 model-satellite agreement of total ozone column (TOC) in the mid-latitudes. We show that the overall ozone response to VSLBr within the mid-latitudes follows the stratospheric abundances evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone losses due to VSLBr are maximised during the present-day period (1990–2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the southern (SH-ML) and northern (NH-ML) mid-latitudes, respectively. Moreover, the projected TOC differences at the end of the 21st century are at least half of the values found for the present-day period. In the tropics, a small (

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3