Failure mode of rainfall-induced landslide of granite residual soil, southeastern Guangxi Province, China

Author:

Wu Shanbai,Zhao Ruihua,Liao Liping,Yang Yunchuan,Wei Yao,Wei Wenzhi

Abstract

Abstract. Granite residual soil landslides are widely distributed in the southeast of Guangxi, China. They pose threats to local communities, economic development and ecological restoration. To understand the failure mode, the landslide can provide a scientific basis for early warning and prevention. In this study, we conducted artificial flume model tests to investigate the failure mode of granite residual soil landslide. The macroscopic phenomena of landslides were observed and summarized. The response and variations of soil moisture content and pore water pressure were analyzed. And the discrepancies in landslide initiation were explored. The results had three aspects: (1) the response of volume moisture content was not synchronized with that of pore water pressure. Their variations were influenced by initial dry density, slope angle and rainfall intensity. The fluctuation of pore water pressure depended on soil mechanical behavior and its diffusion. (2) The differences in the formation process of granite residual soil landslides included the initiation time and mode. The starting time of landslide was delayed with increasing initial dry density and slope angle but shortened with increasing rainfall intensity. The failure mode could be changed from a sudden type to a progressive type due to the increase in initial dry density. (3) There are five stages in the landslide mobilization as follows: rain infiltration and crack generation, soil slide at the slope toe, occurrence of surface runoff and soil erosion, formation of steep-free surface, and soil slide at the upper slope. This research can provide valuable reference for the prevention and early warning of granite residual soil landslide in southeastern Guangxi.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3