CLIMADA v1: a global weather and climate risk assessment platform

Author:

Aznar-Siguan Gabriela,Bresch David N.ORCID

Abstract

Abstract. The need for assessing the risk of extreme weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as high population growth and changing climate conditions matters, too. We present the open-source software CLIMADA (CLIMate ADAptation), which integrates hazard, exposure, and vulnerability to compute the necessary metrics to assess risk and to quantify socio-economic impact. The software design is modular and object oriented, offering a simple collaborative framework and a parallelization strategy which allows for scalable computations on clusters. CLIMADA supports multi-hazard calculations and provides an event-based probabilistic approach that is globally consistent for a wide range of resolutions, suitable for whole-country to detailed local studies. This paper uses the platform to estimate and contextualize the damage of hurricane Irma in the Caribbean in 2017. Most of the affected islands are non-sovereign countries and also rely on overseas support in case disaster strikes. The risk assessment performed for this region, based on remotely available data available shortly before or hours after landfall of Irma, proves to be close to reported damage and hence demonstrates a method to provide readily available impact estimates and associated uncertainties in real time.

Publisher

Copernicus GmbH

Reference43 articles.

1. Aballain, O.: Hurricane Irma and Hurricane Maria in the media: France vs America, a Contrastive Analysis, Utrecht University, 2018.

2. Aznar-Siguan, G. and Bresch, D. N.: CLIMADA_python documentation, available at: https://climada-python.readthedocs.io/en/stable/, last access: 17 July 2019.

3. Bertinelli, L., Mohan, P., and Strobl, E.: Hurricane damage risk assessment in the Caribbean: An analysis using synthetic hurricane events and nightlight imagery, Ecol. Econ., 108, 8589–8594, https://doi.org/10.1016/j.ecolecon.2016.02.004, 2016.

4. Bevere, L., Schwartz, M., Sharan, R., and Zimmerli, P.: Natural catastrophes and man-made disasters in 2017: a year of record-breaking losses, available at: http://media.swissre.com/documents/sigma1_2018_en.pdf (last access: 17 July 2019), 2018.

5. Bickenbach, F., Bode, E., Nunnenkamp, P., and Söder, M.: Night lights and regional GDP, Rev. World Econ., 152, 425–447, https://doi.org/10.1007/s10290-016-0246-0, 2016.

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3