Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints

Author:

Hudman R. C.,Moore N. E.,Mebust A. K.,Martin R. V.,Russell A. R.,Valin L. C.,Cohen R. C.

Abstract

Abstract. Soils have been identified as a major source (~15%) of global nitrogen oxide (NOx) emissions. Parameterizations of soil NOx emissions (SNOx) commonly used in the current generation of chemical transport models were designed to capture mean seasonal behaviour. These parameterizations do not, however, respond quantitatively to the meteorological triggers that are observed to result in pulsed SNOx. Here we present a new parameterization of SNOx implemented within a global chemical transport model (GEOS-Chem). The parameterization represents available nitrogen (N) in soils using biome specific emission factors, online wet- and dry-deposition of N, and fertilizer and manure N derived from a spatially explicit dataset, distributed using seasonality derived from data obtained by the Moderate Resolution Imaging Spectrometer. Moreover, it represents the functional form of emissions derived from point measurements and ecosystem scale experiments including pulsing following soil wetting by rain or irrigation, and emissions that are a smooth function of soil moisture as well as temperature between 0 and 30 °C. This parameterization yields global above-soil SNOx of 10.7 Tg N yr−1, including 1.8 Tg N yr−1 from fertilizer N input (1.5% of applied N) and 0.5 Tg N yr−1 from atmospheric N deposition. Over the United States (US) Great Plains region, SNOx are predicted to comprise 15–40% of the tropospheric NO2 column and increase column variability by a factor of 2–4 during the summer months due to chemical fertilizer application and warm temperatures. SNOx enhancements of 50–80% of the simulated NO2 column are predicted over the African Sahel during the monsoon onset (April–June). In this region the day-to-day variability of column NO2 is increased by a factor of 5 due to pulsed-N emissions. We evaluate the model by comparison with observations of NO2 column density from the Ozone Monitoring Instrument (OMI). We find that the model is able to reproduce the observed interannual variability of NO2 (induced by pulsed-N emissions) over the US Great Plains. We also show that the OMI mean (median) NO2 observed during the overpass following first rainfall over the Sahel is 49% (23%) higher than in the five days preceding. The measured NO2 on the day after rainfall is still 23% (5%) higher, providing a direct measure of the pulse's decay time of 1–2 days. This is consistent with the pulsing representation used in our parameterization and much shorter than 5–14 day pulse decay length used in current models.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3