Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry

Author:

Liu Pengfei,Ye Can,Xue Chaoyang,Zhang Chenglong,Mu YujingORCID,Sun Xu

Abstract

Abstract. A vast area in China is currently going through severe haze episodes with drastically elevated concentrations of PM2.5 in winter. Nitrate and sulfate are the main constituents of PM2.5, but their formations via NO2 and SO2 oxidation are still not comprehensively understood, especially under different pollution or atmospheric relative humidity (RH) conditions. To elucidate formation pathways of nitrate and sulfate in different polluted cases, hourly samples of PM2.5 were collected continuously in Beijing during the wintertime of 2016. Three serious pollution cases were identified reasonably during the sampling period, and the secondary formations of nitrate and sulfate were found to make a dominant contribution to atmospheric PM2.5 under the relatively high RH condition. The significant correlation between NOR, NOR = NO3-/(NO3-+NO2), and [NO2]2 × [O3] during the nighttime under the RH≥60 % condition indicated that the heterogeneous hydrolysis of N2O5 involving aerosol liquid water was responsible for the nocturnal formation of nitrate at the extremely high RH levels. The more often coincident trend of NOR and [HONO] × [DR] (direct radiation) × [NO2] compared to its occurrence with [Dust] × [NO2] during the daytime under the 30 % < RH < 60 % condition provided convincing evidence that the gas-phase reaction of NO2 with OH played a pivotal role in the diurnal formation of nitrate at moderate RH levels. The extremely high mean values of SOR, SOR = SO42-/(SO42-+SO2), during the whole day under the RH≥60 % condition could be ascribed to the evident contribution of SO2 aqueous-phase oxidation to the formation of sulfate during the severe pollution episodes. Based on the parameters measured in this study and the known sulfate production rate calculation method, the oxidation pathway of H2O2 rather than NO2 was found to contribute greatly to the aqueous-phase formation of sulfate.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3