Debris-flow hazard assessment at regional scale by combining susceptibility mapping and radar rainfall

Author:

Berenguer M.ORCID,Sempere-Torres D.,Hürlimann M.ORCID

Abstract

Abstract. This work presents a technique for debris flow (DF) hazard assessment able to be used in the framework of DF early warning systems at regional scale. The developed system is applied at subbasin scale and is based on the concepts of fuzzy logic to combine two ingredients: (i) DF subbasin susceptibility assessment based on geomorphological variables, and (ii) the magnitude of the rainfall situation as depicted from radar rainfall estimates. The output of the developed technique is a three-class hazard level ("low", "moderate" and "high") in each subbasin when a new radar rainfall map is available. The developed technique has been applied in a domain in the Eastern Pyrenees (Spain) from May to October 2010. The estimated hazard level stayed "low" during the entire period in 20% of the subbasins, while, in the most susceptible subbasins, the hazard level was at least moderate for up to10 days. Quantitative evaluation of the estimated hazard level was possible in a subbasin where debris flows were monitored during the analysis period. The technique was able to identify the 3 events observed in the catchment (1 debris flow and 2 hyperconcentrated flow events) and produced no false alarm.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3