Author:
Cecioni C.,Abdolali A.,Bellotti G.,Sammarco P.
Abstract
Abstract. Tsunamigenic fast movements of the sea-bed generate pressure waves in weakly compressible sea water, namely hydro-acoustic waves, which travel at the sound celerity in water (about 1500 m s−1). These waves travel much faster than the counter part long free-surface gravity waves and contain significant information on the source. Measurement of hydro-acoustic waves can therefore anticipate the tsunami arrival and significantly improve the capability of tsunami early warning systems. In this paper a novel numerical model for reproduction of hydro-acoustic waves is applied to analyze the generation and propagation in real bathymetry of these pressure perturbations for two historical catastrophic earthquake scenarios in Mediterranean Sea. The model is based on the solution of a depth-integrated equation and therefore results computationally efficient in reconstructing the hydro-acoustic waves propagation scenarios.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献