Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries

Author:

Tubiello Francesco N.ORCID,Karl Kevin,Flammini Alessandro,Gütschow JohannesORCID,Obli-Layrea Griffiths,Conchedda Giulia,Pan Xueyao,Qi Sally Yue,Halldórudóttir Heiðarsdóttir Hörn,Wanner Nathan,Quadrelli Roberta,Rocha Souza Leonardo,Benoit Philippe,Hayek MatthewORCID,Sandalow David,Mencos-Contreras ErikORCID,Rosenzweig Cynthia,Rosero Moncayo Jose,Conforti Piero,Torero Maximo

Abstract

Abstract. We present results from the FAOSTAT agri-food systems emissions database, relative to 236 countries and territories and over the period 1990–2019. We find that in 2019, world-total food systems emissions were 16.5 billion metric tonnes (Gt CO2eq yr−1), corresponding to 31 % of total anthropogenic emissions. Of the agri-food systems total, global emissions within the farm gate –from crop and livestock production processes including on-farm energy use—were 7.2 Gt CO2eq yr−1; emissions from land use change, due to deforestation and peatland degradation, were 3.5 Gt CO2eq yr−1; and emissions from pre- and post-production processes –manufacturing of fertilizers, food processing, packaging, transport, retail, household consumption and food waste disposal—were 5.8 Gt CO2eq yr−1. Over the study period 1990–2019, agri-food systems emissions increased in total by 17 %, largely driven by a doubling of emissions from pre- and post-production processes. Conversely, the FAO data show that since 1990 land use emissions decreased by 25 %, while emissions within the farm gate increased only 9 %. In 2019, in terms of single GHG, pre- and post- production processes emitted the most CO2 (3.9 Gt CO2 yr−1), preceding land use change (3.3 Gt CO2 yr−1) and farm-gate (1.2 Gt CO2 yr−1) emissions. Conversely, farm-gate activities were by far the major emitter of methane (140 Mt CH4 yr−1) and of nitrous oxide (7.8 Mt N2O yr−1). Pre-and post- processes were also significant emitters of methane (49 Mt CH4 yr−1), mostly generated from the decay of solid food waste in landfills and open-dumps. The most important trend over the 30-year period since 1990 highlighted by our analysis is the increasingly important role of food-related emissions generated outside of agricultural land, in pre- and post-production processes along food supply chains, at all scales from global, regional and national, from 1990 to 2019. In fact, our data show that by 2019, food supply chains had overtaken farm-gate processes to become the largest GHG component of agri-food systems emissions in Annex I parties (2.2 Gt CO2eq yr−1). They also more than doubled in non-Annex I parties (to 3.5 Gt CO2eq yr−1), becoming larger than emissions from land-use change. By 2019 food supply chains had become the largest agri-food system component in China (1100 Mt CO2eq yr−1); USA (700 Mt CO2eq yr−1) and EU-27 (600 Mt CO2eq yr−1). This has important repercussions for food-relevant national mitigation strategies, considering that until recently these have focused mainly on reductions of non-CO2 gases within the farm gate and on CO2 mitigation from land use change. The information used in this work is available as open data at: https://zenodo.org/record/5615082 (Tubiello et al., 2021d). It is also available to users via the FAOSTAT database (FAO, 2021a), with annual updates.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3