Abstract
Abstract. Accurate and spatially explicit information on forest fuels becomes essential to designing an integrated fire risk management strategy, as fuel characteristics are critical for fire danger estimation, fire propagation and emissions modelling, among other aspects. This paper presents the conceptual development of a new fuel classification system that can be adapted to different spatial scales and used for different purposes. The resulting fuel classification system encompasses a total of 85 fuel types, that can be grouped into six main fuel categories (forest, shrubland, grassland, cropland, wet and peat/semi-peat land and urban), plus a nonfuel category. For the forest cover, fuel types include two vertical strata, overstory and understory, to account for both surface and crown fires. Based on this classification system, a European fuel map at 1 km resolution, was developed within the framework of the FirEUrisk project, which aims to create a European integrated strategy for fire danger assessment, reduction, and adaptation. Fuels were mapped using land cover and biogeographic datasets, as well as bioclimatic modelling, in a Geographic Information System environment. The first assessment of this map was performed by comparing it to high-resolution data, including LUCAS (Land Use and Coverage Area frame Survey) data, Google Earth images, Google Street View images, and the GlobeLand30 map. This validation exercise provided an overall accuracy of 88 % for the main fuel types, and 81 % for all mapped fuel types. Finally, to facilitate the use of this fuel dataset in fire behaviour modelling, a first assignment of fuel parameters to each fuel type was performed by developing a crosswalk to the standard fuel models defined by Scott and Burgan (FBFM, Fire Behavior Fuel Models), considering European climate diversity.
Funder
H2020 Societal Challenges
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献