Chlorophyll-a growth rates and related environmental variables in global temperate and cold-temperate lakes

Author:

Adams HannahORCID,Ye Jane,Persaud Bhaleka,Slowinski Stephanie,Kheyrollah Pour HomaORCID,Van Cappellen Philippe

Abstract

Abstract. Lakes are key ecosystems within the global biogeosphere. However, the bottom-up controls on the biological productivity of lakes, including surface temperature, ice phenology, nutrient loads and mixing regime, are increasingly altered by climate warming and land-use changes. To better understand the environmental drivers of lake productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water quality parameters and surface solar irradiance, for temperate and cold-temperate lakes experiencing seasonal ice cover. We developed a method to identify periods of rapid algal growth from in situ chlorophyll-a time series data and applied it to measurements performed between 1964 and 2019 across 357 lakes, predominantly located north of 40°. Long-term trends show that the algal growth windows have been occurring earlier in the year, thus potentially extending the growing season and increasing the annual productivity of northern lakes. The dataset is also used to analyze the relationship between chlorophyll-a growth rates and solar irradiance. Lakes of higher trophic status exhibit a higher sensitivity to solar radiation, especially at moderate irradiance values during spring. The lower sensitivity of chlorophyll-a growth rates to solar irradiance in oligotrophic lakes likely reflects the dominant role of nutrient limitation. Chlorophyll-a growth rates are significantly influenced by light availability in spring but not in summer and fall, consistent with a switch to top-down control of summer and fall algal communities. The growth window dataset can be used to analyze trends in lake productivity across the northern hemisphere or at smaller, regional scales. We present some general trends in the data and encourage other researchers to use the open dataset for their own research questions.

Funder

Global Water Futures

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3