Abstract
Abstract. Lakes are key ecosystems within the global biogeosphere. However, the bottom-up controls on the biological productivity of lakes, including surface temperature, ice phenology, nutrient loads and mixing regime, are increasingly altered by climate warming and land-use changes. To better understand the environmental drivers of lake productivity, we assembled a dataset on chlorophyll-a concentrations, as well as associated water quality parameters and surface solar irradiance, for temperate and cold-temperate lakes experiencing seasonal ice cover. We developed a method to identify periods of rapid algal growth from in situ chlorophyll-a time series data and applied it to measurements performed between 1964 and 2019 across 357 lakes, predominantly located north of 40°. Long-term trends show that the algal growth windows have been occurring earlier in the year, thus potentially extending the growing season and increasing the annual productivity of northern lakes. The dataset is also used to analyze the relationship between chlorophyll-a growth rates and solar irradiance. Lakes of higher trophic status exhibit a higher sensitivity to solar radiation, especially at moderate irradiance values during spring. The lower sensitivity of chlorophyll-a growth rates to solar irradiance in oligotrophic lakes likely reflects the dominant role of nutrient limitation. Chlorophyll-a growth rates are significantly influenced by light availability in spring but not in summer and fall, consistent with a switch to top-down control of summer and fall algal communities. The growth window dataset can be used to analyze trends in lake productivity across the northern hemisphere or at smaller, regional scales. We present some general trends in the data and encourage other researchers to use the open dataset for their own research questions.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献