A global monthly climatology of total alkalinity: a neural network approach
-
Published:2019-07-31
Issue:3
Volume:11
Page:1109-1127
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Broullón Daniel, Pérez Fiz F.ORCID, Velo AntónORCID, Hoppema MarioORCID, Olsen AreORCID, Takahashi Taro, Key Robert M., Tanhua Toste, González-Dávila Melchor, Jeansson Emil, Kozyr Alex, van Heuven Steven M. A. C.ORCID
Abstract
Abstract. Global climatologies of the seawater CO2 chemistry variables
are necessary to assess the marine carbon cycle in depth. The climatologies
should adequately capture seasonal variability to properly address ocean
acidification and similar issues related to the carbon cycle. Total
alkalinity (AT) is one variable of the seawater CO2 chemistry
system involved in ocean acidification and frequently measured. We used the
Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract
relationships among the drivers of the AT variability and AT
concentration using a neural network (NNGv2) to generate a monthly
climatology. The GLODAPv2 quality-controlled dataset used was modeled by the
NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1.
Validation tests with independent datasets revealed the good generalization
of the network. Data from five ocean time-series stations showed an
acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of
the monthly AT variability in the time series suggests that the NNGv2
is a good candidate to generate a monthly climatology. The climatological
fields of AT were obtained passing through the NNGv2 the World Ocean
Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen
and the computed climatologies of nutrients from the previous ones with a
neural network. The spatiotemporal resolution is set by WOA13:
1∘ × 1∘ in the horizontal, 102 depth levels
(0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m)
temporal resolution. The product is distributed through the data repository
of the Spanish National Research Council (CSIC;
https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).
Funder
Consejo Superior de Investigaciones Científicas Ministerio de Educación, Cultura y Deporte H2020 Food Ministerio de Economía y Competitividad
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference60 articles.
1. Anderson, L. G., Jutterström, S., Kaltin, S., Jones, E. P., and
Björk, G.: Variability in river runoff distribution in the Eurasian
Basin of the Arctic Ocean, J. Geophys. Res., 109, 1–8,
https://doi.org/10.1029/2003JC001773, 2004. 2. Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S.
L., Thomas, H., Borges, A. V., and Allen, I.: The carbonate system in the
North Sea: sensitivity and model validation, J. Mar. Syst., 102–104, 1–13,
https://doi.org/10.1016/j.jmarsys.2012.04.006, 2012. 3. Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. 4. Bates, N., Astor, Y., Church, M., Currie, K., Dore, J.,
Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J.,
and Santa-Casiano, M.: A Time-Series View of Changing Ocean Chemistry Due to
Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography,
27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. 5. Beale, M. H., Hagan, T. M., and Demuth, H. B.: Deep Learning Toolbox™,
User's Guide, Release 2018a, The MathWorks, Inc., Natick, Massachusetts,
United States, available at: https://es.mathworks.com/help/pdf_doc/deeplearning/nnet_ug.pdf, last access: 20 August 2018.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|