Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations

Author:

Peltola OlliORCID,Vesala Timo,Gao YaoORCID,Räty Olle,Alekseychik PavelORCID,Aurela MikaORCID,Chojnicki Bogdan,Desai Ankur R.ORCID,Dolman Albertus J.ORCID,Euskirchen Eugenie S.ORCID,Friborg ThomasORCID,Göckede MathiasORCID,Helbig Manuel,Humphreys Elyn,Jackson Robert B.ORCID,Jocher Georg,Joos FortunatORCID,Klatt Janina,Knox Sara H.ORCID,Kowalska Natalia,Kutzbach LarsORCID,Lienert SebastianORCID,Lohila AnnaleaORCID,Mammarella Ivan,Nadeau Daniel F.,Nilsson Mats B.,Oechel Walter C.,Peichl MatthiasORCID,Pypker Thomas,Quinton William,Rinne JanneORCID,Sachs TorstenORCID,Samson MateuszORCID,Schmid Hans Peter,Sonnentag Oliver,Wille ChristianORCID,Zona DonatellaORCID,Aalto TuulaORCID

Abstract

Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).

Funder

Academy of Finland

Gordon and Betty Moore Foundation

Helmholtz Association

Horizon 2020

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3