Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
-
Published:2019-08-22
Issue:3
Volume:11
Page:1263-1289
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Peltola OlliORCID, Vesala Timo, Gao YaoORCID, Räty Olle, Alekseychik PavelORCID, Aurela MikaORCID, Chojnicki Bogdan, Desai Ankur R.ORCID, Dolman Albertus J.ORCID, Euskirchen Eugenie S.ORCID, Friborg ThomasORCID, Göckede MathiasORCID, Helbig Manuel, Humphreys Elyn, Jackson Robert B.ORCID, Jocher Georg, Joos FortunatORCID, Klatt Janina, Knox Sara H.ORCID, Kowalska Natalia, Kutzbach LarsORCID, Lienert SebastianORCID, Lohila AnnaleaORCID, Mammarella Ivan, Nadeau Daniel F., Nilsson Mats B., Oechel Walter C., Peichl MatthiasORCID, Pypker Thomas, Quinton William, Rinne JanneORCID, Sachs TorstenORCID, Samson MateuszORCID, Schmid Hans Peter, Sonnentag Oliver, Wille ChristianORCID, Zona DonatellaORCID, Aalto TuulaORCID
Abstract
Abstract. Natural wetlands constitute the largest and most uncertain source
of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data
from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at
https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).
Funder
Academy of Finland Gordon and Betty Moore Foundation Helmholtz Association Horizon 2020 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference148 articles.
1. Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical Forecasting
of Current and Future Circum-Arctic Ground Temperatures and Active Layer
Thickness, Geophys. Res. Lett., 45, 4889–4898,
https://doi.org/10.1029/2018GL078007, 2018. 2. Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T., and
Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal
Environ. Res., 14, 699–710, 2009. 3. Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere – the state and future of the eddy covariance method,
Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. 4. Bartlett, K. B. and Harriss, R. C.: Review and assessment of methane
emissions from wetlands, Chemosphere, 26, 261–320,
https://doi.org/10.1016/0045-6535(93)90427-7, 1993. 5. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon
Dioxide Uptake: Global Distribution and Covariation with Climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010.
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|