Efficient and stable coupling of the SuperdropNet deep-learning-based cloud microphysics (v0.1.0) with the ICON climate and weather model (v2.6.5)

Author:

Arnold CarolineORCID,Sharma ShivaniORCID,Weigel TobiasORCID,Greenberg David S.

Abstract

Abstract. Machine learning (ML) algorithms can be used in Earth system models (ESMs) to emulate sub-grid-scale processes. Due to the statistical nature of ML algorithms and the high complexity of ESMs, these hybrid ML ESMs require careful validation. Simulation stability needs to be monitored in fully coupled simulations, and the plausibility of results needs to be evaluated in suitable experiments. We present the coupling of SuperdropNet, a machine learning model for emulating warm-rain processes in cloud microphysics, with ICON (Icosahedral Nonhydrostatic) model v2.6.5. SuperdropNet is trained on computationally expensive droplet-based simulations and can serve as an inexpensive proxy within weather prediction models. SuperdropNet emulates the collision–coalescence of rain and cloud droplets in a warm-rain scenario and replaces the collision–coalescence process in the two-moment cloud microphysics scheme. We address the technical challenge of integrating SuperdropNet, developed in Python and PyTorch, into ICON, written in Fortran, by implementing three different coupling strategies: embedded Python via the C foreign function interface (CFFI), pipes, and coupling of program components via Yet Another Coupler (YAC). We validate the emulator in the warm-bubble scenario and find that SuperdropNet runs stably within the experiment. By comparing experiment outcomes of the two-moment bulk scheme with SuperdropNet, we find that the results are physically consistent and discuss differences that are observed in several diagnostic variables. In addition, we provide a quantitative and qualitative computational benchmark for three different coupling strategies – embedded Python, coupler YAC, and pipes – and find that embedded Python is a useful software tool for validating hybrid ML ESMs.

Publisher

Copernicus GmbH

Reference52 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensorflow: A system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, US, 2–4 November 2016, 265–283, https://arxiv.org/abs/1603.04467 (last access: 6 September 2023), 2016. a

2. Alexeev, D.: PyTorch bindings for Fortran (v0.4), GitHub [code], https://github.com/alexeedm/pytorch-fortran (last access: 6 September 2023), 2023. a

3. Arnold, C., Sharma, S., and Weigel, T.: DKRZ-AIM/dkrz-hereon-icon-superdropnet: Integrating SuperdropNet (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10069121, 2023a. a

4. Arnold, C., Sharma, S., and Weigel, T.: ICON Code v 2.6.5 including coupling schemes for integrating SuperdropNet, Zenodo [code], https://doi.org/10.5281/zenodo.8348256, 2023b. a

5. Arnold, C., Sharma, S., and Weigel, T.: Data set for: Efficient and Stable Coupling of the SuperdropNet Deep Learning-based Cloud Microphysics (v0.1.0) to the ICON Climate and Weather Model (v2.6.5), Zenodo [data set], https://doi.org/10.5281/zenodo.8348266, 2023c. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3