Current and future wind energy resources in the North Sea according to CMIP6

Author:

Hahmann Andrea N.ORCID,García-Santiago Oscar,Peña AlfredoORCID

Abstract

Abstract. We explore the changes in wind energy resources in northern Europe using output from historical to mid-21st century CMIP6 simulations and the high-emission SSP5-8.5 scenario. This study improves upon many assumptions made in the past. First, we interpolate the winds to hub height using model-level raw data; second, we use a large ensemble of CMIP6 models; third, we consider the possible wake effects on the annual energy production of a large wind farm cluster proposed for the North Sea. The common practice of extrapolating 10 m wind speeds to turbine height using the power law with a constant shear exponent is often a poor approximation of the actual turbine-height wind speed. This approximation can exaggerate the future changes in wind resources and ignore possible surface roughness and atmospheric stability changes. The evaluation of the wind climatologies in the CMIP6 models over the North Sea for the historical period shows good correspondence with measurements from tall masts and three reanalysis data points for 16 of the 18 models. Some of the models run at relatively high spatial resolution are as good as the reanalyses at representing the wind climate in this region. Our results show that annual mean wind speed and wind resources in northern Europe are not particularly affected by climate change in 2031–2050 relative to 1995–2014, according to a subset of 16 models in the CMIP6 collection. However, the seasonal distribution of these resources is significantly altered. Most models agree on reductions in the future wind in summer in a band that extends from the British Isles to the Baltic Sea and on increases in winter in the southern Baltic Sea. The energy production calculations show that summer energy production in a planned large wind farm cluster in the North Sea could be reduced by a median of 6.9 % during 2031–2050 when taking into account the wind farm wakes (that accounts for −0.7 %) and the changes in air density (that account for −0.9 %).

Funder

Danida Fellowship Centre

Horizon 2020

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference80 articles.

1. Alonso Díaz, Y., Bezanilla, A., Roque, A., Centella, A., Borrajero, I., and Martinez, Y.: Wind resource assessment of Cuba in future climate scenarios, Wind Eng., 43, 311–326, https://doi.org/10.1177/0309524X18780399, 2019. a

2. Badger, M., Peña, A., Hahmann, A. N., Mouche, A. A., and Hasager, C. B.: Extrapolating satellite winds to turbine operating heights, J. Appl. Meteorol. Clim., 55, 975–991, https://doi.org/10.1175/JAMC-D-15-0197.1, 2016. a

3. Barthelmie, R. J. and Jensen, L. E.: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm, Wind Energy, 13, 573–586, https://doi.org/10.1002/we.408, 2010. a

4. Beiter, P., Cooperman, A., Lantz, E., Stehly, T., Shields, M., Wiser, R., Telsnig, T., Kitzing, L., Berkhout, V., and Kikuchi, Y.: Wind power costs driven by innovation and experience with further reductions on the horizon, Wiley Interdiscip. Rev. Energy Environ., 10, e398, https://doi.org/10.1002/wene.398, 2021. a

5. Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3