Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
-
Published:2015-03-10
Issue:5
Volume:15
Page:2709-2721
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Pramitha M., Venkat Ratnam M., Taori A.ORCID, Krishna Murthy B. V., Pallamraju D., Vijaya Bhaskar Rao S.
Abstract
Abstract. Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki (13.5° N, 79.2° E) and Hyderabad (17.5° N, 78.5° E) are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. The ray tracing is performed using background temperature and wind data obtained from the MSISE-90 and HWM-07 models, respectively. For the Gadanki region, the suitability of these models is tested. Further, a climatological model of the background atmosphere for the Gadanki region has been developed using nearly 30 years of observations available from a variety of ground-based (MST radar, radiosondes, MF radar) and rocket- and satellite-borne measurements. ERA-Interim products are utilized for constructing background parameters corresponding to the meteorological conditions of the observations. With the reverse ray-tracing method, the source locations for nine wave events could be identified to be in the upper troposphere, whereas for five other events the waves terminated in the mesosphere itself. Uncertainty in locating the terminal points of wave events in the horizontal direction is estimated to be within 50–100 km and 150–300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in the tidal amplitudes. Prevailing conditions at the terminal points for each of the 14 events are provided. As no convection in and around the terminal points is noticed, convection is unlikely to be the source. Interestingly, large (~9 m s−1km−1) vertical shears in the horizontal wind are noticed near the ray terminal points (at 10–12 km altitude) and are thus identified to be the source for generating the observed high-phase-speed, high-frequency gravity waves.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Alexander, M. J., Holton, J. R., and Durran, D. R.: The gravity wave response above deep convection in a squall line simulation, J. Atmos. Sci., 52, 2212–2226, 1995. 2. Alexander , M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models, and the global distribution of gravity-wave momentum flux from observations and models, Q. J. R. Meteorol. Soc., 136, 1103–1124, 2010. 3. Brown, L. B., Gerrard, A. J., Meriwether, J. W., and Makela, J. J.: All-sky imaging observations of mesospheric fronts in OI 557.7 nm and broadband OH airglow emissions: Analysis of frontal structure, atmospheric background conditions, and potential sourcing mechanisms, J. Geophys. Res., 109, D19104, https://doi.org/10.1029/2003JD004223, 2004. 4. Chun, H. Y. and Kim, Y. H.: Secondary waves generated by breaking of convective gravity waves in the mesosphere and their influence in the wave momentum flux, J. Geophys. Res., 113, D23107, https://doi.org/10.1029/2008JD009792, 2008. 5. Clark, T. L., Hauf, T., and Kuettner, J. P.: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments, Q. J. R. Meteorol. Soc.,112, 899–925, https://doi.org/10.1002/qj.49711247402,1986.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|