A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer

Author:

Yuan R.ORCID,Luo T.,Sun J.ORCID,Zeng Z.,Ge C.,Fu Y.

Abstract

Abstract. The atmospheric refractive index consists of both real and imaginary parts. The intensity of refractive index fluctuations is generally expressed as the refractive index structure parameter, with the real part reflecting the strength of atmospheric turbulence and the imaginary part reflecting absorption in the light path. A large aperture scintillometer (LAS) is often used to measure the structure parameter of the real part of the atmospheric refractive index, from which the sensible and latent heat fluxes can further be obtained, whereas the influence of the imaginary part is ignored or considered noise. In this theoretical analysis study, the relationship between logarithmic light intensity variance and the atmospheric refractive index structure parameter (ARISP), as well as that between the logarithmic light intensity structure function and the ARISP, is derived. Additionally, a simple expression for the imaginary part of the ARISP is obtained which can be conveniently used to determine the imaginary part of the ARISP from LAS measurements. Moreover, these relationships provide a new method for estimating the outer scale of turbulence. Light propagation experiments were performed in the urban surface layer, from which the imaginary part of the ARISP was calculated. The experimental results showed good agreement with the presented theory. The results also suggest that the imaginary part of the ARISP exhibits a different diurnal variation from that of the real part. For the wavelength of light used (0.62 μm), the variation of the imaginary part of the ARISP is related to both the turbulent transport process and the spatial distribution characteristics of aerosols.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3