Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology

Author:

Bessagnet Bertrand,Pirovano Guido,Mircea Mihaela,Cuvelier Cornelius,Aulinger Armin,Calori Giuseppe,Ciarelli Giancarlo,Manders Astrid,Stern Rainer,Tsyro Svetlana,García Vivanco Marta,Thunis Philippe,Pay Maria-TeresaORCID,Colette AugustinORCID,Couvidat Florian,Meleux Frédérik,Rouïl Laurence,Ung Anthony,Aksoyoglu SebnemORCID,Baldasano José MaríaORCID,Bieser JohannesORCID,Briganti Gino,Cappelletti Andrea,D'Isidoro Massimo,Finardi SandroORCID,Kranenburg Richard,Silibello Camillo,Carnevale Claudio,Aas Wenche,Dupont Jean-Charles,Fagerli Hilde,Gonzalez Lucia,Menut LaurentORCID,Prévôt André S. H.,Roberts Pete,White Les

Abstract

Abstract. The EURODELTA III exercise has facilitated a comprehensive intercomparison and evaluation of chemistry transport model performances. Participating models performed calculations for four 1-month periods in different seasons in the years 2006 to 2009, allowing the influence of different meteorological conditions on model performances to be evaluated. The exercise was performed with strict requirements for the input data, with few exceptions. As a consequence, most of differences in the outputs will be attributed to the differences in model formulations of chemical and physical processes. The models were evaluated mainly for background rural stations in Europe. The performance was assessed in terms of bias, root mean square error and correlation with respect to the concentrations of air pollutants (NO2, O3, SO2, PM10 and PM2.5), as well as key meteorological variables. Though most of meteorological parameters were prescribed, some variables like the planetary boundary layer (PBL) height and the vertical diffusion coefficient were derived in the model preprocessors and can partly explain the spread in model results. In general, the daytime PBL height is underestimated by all models. The largest variability of predicted PBL is observed over the ocean and seas. For ozone, this study shows the importance of proper boundary conditions for accurate model calculations and then on the regime of the gas and particle chemistry. The models show similar and quite good performance for nitrogen dioxide, whereas they struggle to accurately reproduce measured sulfur dioxide concentrations (for which the agreement with observations is the poorest). In general, the models provide a close-to-observations map of particulate matter (PM2.5 and PM10) concentrations over Europe rather with correlations in the range 0.4–0.7 and a systematic underestimation reaching −10 µg m−3 for PM10. The highest concentrations are much more underestimated, particularly in wintertime. Further evaluation of the mean diurnal cycles of PM reveals a general model tendency to overestimate the effect of the PBL height rise on PM levels in the morning, while the intensity of afternoon chemistry leads formation of secondary species to be underestimated. This results in larger modelled PM diurnal variations than the observations for all seasons. The models tend to be too sensitive to the daily variation of the PBL. All in all, in most cases model performances are more influenced by the model setup than the season. The good representation of temporal evolution of wind speed is the most responsible for models' skillfulness in reproducing the daily variability of pollutant concentrations (e.g. the development of peak episodes), while the reconstruction of the PBL diurnal cycle seems to play a larger role in driving the corresponding pollutant diurnal cycle and hence determines the presence of systematic positive and negative biases detectable on daily basis.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3