Effects of daily meteorology on the interpretation of space-based remote sensing of NO<sub>2</sub>
-
Published:2016-12-09
Issue:23
Volume:16
Page:15247-15264
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Laughner Joshua L.ORCID, Zare Azimeh, Cohen Ronald C.ORCID
Abstract
Abstract. Retrievals of tropospheric NO2 columns from UV–visible observations of reflected sunlight require a priori vertical profiles to account for the variation in sensitivity of the observations to NO2 at different altitudes. These profiles vary in space and time but are usually approximated using models that do not resolve the full details of this variation. Currently, no operational retrieval simulates these a priori profiles at both high spatial and high temporal resolution. Here we examine the additional benefits of daily variations in a priori profiles for retrievals already simulating a priori NO2 profiles at sufficiently high spatial resolution to identify variations of NO2 within urban plumes. We show the effects of introducing daily variation into a priori profiles can be as large as 40 % and 3 × 1015 molec. cm−2 for an individual day and lead to corrections as large as −13 % for a monthly average in a case study of Atlanta, GA, USA. Additionally, we show that NOx emissions estimated from space-based remote sensing using daily, high-spatial-resolution a priori profiles are ∼ 100 % greater than those of a retrieval using spatially coarse a priori profiles, and 26–40 % less than those of a retrieval using monthly averaged high-spatial-resolution profiles.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference87 articles.
1. Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2-O2 absorption band at 477 nm, J. Geophys. Res.-Atmos., 109, d05204, https://doi.org/10.1029/2003JD003915, 2004. 2. Bak, J., Kim, J. H., Liu, X., Chance, K., and Kim, J.: Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra, Atmos. Meas. Tech., 6, 239–249, https://doi.org/10.5194/amt-6-239-2013, 2013. 3. Beirle, S., Huntrieser, H., and Wagner, T.: Direct satellite observation of lightning-produced NOx, Atmos. Chem. Phys., 10, 10965–10986, https://doi.org/10.5194/acp-10-10965-2010, 2010. 4. Beirle, S., Boersma, K., Platt, U., Lawrence, M., and Wagner, T.: Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space, Science, 333, 1737–1739, 2011. 5. Boersma, K., Bucsela, E., Brinksma, E., and Gleason, J.: NO2, in: OMI Algorithm Theoretical Basis Document, Vol. 4, OMI Trace Gas Algorithms, ATB-OMI-04, version 2.0, 13–36, available at: http://eospso.nasa.gov/sites/default/files/atbd/ATBD-OMI-04.pdf (last access: 22 November 2016), 2002.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|