Effects of daily meteorology on the interpretation of space-based remote sensing of NO<sub>2</sub>

Author:

Laughner Joshua L.ORCID,Zare Azimeh,Cohen Ronald C.ORCID

Abstract

Abstract. Retrievals of tropospheric NO2 columns from UV–visible observations of reflected sunlight require a priori vertical profiles to account for the variation in sensitivity of the observations to NO2 at different altitudes. These profiles vary in space and time but are usually approximated using models that do not resolve the full details of this variation. Currently, no operational retrieval simulates these a priori profiles at both high spatial and high temporal resolution. Here we examine the additional benefits of daily variations in a priori profiles for retrievals already simulating a priori NO2 profiles at sufficiently high spatial resolution to identify variations of NO2 within urban plumes. We show the effects of introducing daily variation into a priori profiles can be as large as 40 % and 3 × 1015 molec. cm−2 for an individual day and lead to corrections as large as −13 % for a monthly average in a case study of Atlanta, GA, USA. Additionally, we show that NOx emissions estimated from space-based remote sensing using daily, high-spatial-resolution a priori profiles are  ∼ 100 % greater than those of a retrieval using spatially coarse a priori profiles, and 26–40 % less than those of a retrieval using monthly averaged high-spatial-resolution profiles.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3