Parameterization of oceanic whitecap fraction based on satellite observations

Author:

Albert Monique F. M. A.,Anguelova Magdalena D.,Manders Astrid M. M.,Schaap Martijn,de Leeuw GerritORCID

Abstract

Abstract. In this study, the utility of satellite-based whitecap fraction (W) data for the prediction of sea spray aerosol (SSA) emission rates is explored. More specifically, the study aims at evaluating how an account for natural variability of whitecaps in the W parameterization would affect SSA mass flux predictions when using a sea spray source function (SSSF) based on the discrete whitecap method. The starting point is a data set containing W data for 2006 together with matching wind speed U10 and sea surface temperature (SST) T. Whitecap fraction W was estimated from observations of the ocean surface brightness temperature TB by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global-scale assessment of the data set yielded approximately quadratic correlation between W and U10. A new global W(U10) parameterization was developed and used to evaluate an intrinsic correlation between W and U10 that could have been introduced while estimating W from TB. A regional-scale analysis over different seasons indicated significant differences of the coefficients of regional W(U10) relationships. The effect of SST on W is explicitly accounted for in a new W(U10, T) parameterization. The analysis of W values obtained with the new W(U10) and W(U10, T) parameterizations indicates that the influence of secondary factors on W is for the largest part embedded in the exponent of the wind speed dependence. In addition, the W(U10, T) parameterization is able to partially model the spread (or variability) of the satellite-based W data. The satellite-based parameterization W(U10, T) was applied in an SSSF to estimate the global SSA emission rate. The thus obtained SSA production rate for 2006 of 4.4  ×  1012 kg year−1 is within previously reported estimates, however with distinctly different spatial distribution.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3