Atmospheric abundance and global emissions of perfluorocarbons CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub> and
C<sub>3</sub>F<sub>8</sub> since 1800 inferred from ice core, firn, air archive and in situ measurements
-
Published:2016-09-21
Issue:18
Volume:16
Page:11733-11754
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Trudinger Cathy M.ORCID, Fraser Paul J., Etheridge David M.ORCID, Sturges William T., Vollmer Martin K.ORCID, Rigby MattORCID, Martinerie Patricia, Mühle JensORCID, Worton David R., Krummel Paul B.ORCID, Steele L. Paul, Miller Benjamin R., Laube Johannes, Mani Francis S., Rayner Peter J.ORCID, Harth Christina M., Witrant Emmanuel, Blunier ThomasORCID, Schwander Jakob, O'Doherty SimonORCID, Battle Mark
Abstract
Abstract. Perfluorocarbons (PFCs) are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production and semiconductor manufacture. They have been targeted for emission controls under the United Nations Framework Convention on Climate Change. Here we present the first continuous records of the atmospheric abundance of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from 1800 to 2014. The records are derived from high-precision measurements of PFCs in air extracted from polar firn or ice at six sites (DE08, DE08-2, DSSW20K, EDML, NEEM and South Pole) and air archive tanks and atmospheric air sampled from both hemispheres. We take account of the age characteristics of the firn and ice core air samples and demonstrate excellent consistency between the ice core, firn and atmospheric measurements. We present an inversion for global emissions from 1900 to 2014. We also formulate the inversion to directly infer emission factors for PFC emissions due to aluminium production prior to the 1980s. We show that 19th century atmospheric levels, before significant anthropogenic influence, were stable at 34.1 ± 0.3 ppt for CF4 and below detection limits of 0.002 and 0.01 ppt for C2F6 and C3F8, respectively. We find a significant peak in CF4 and C2F6 emissions around 1940, most likely due to the high demand for aluminium during World War II, for example for construction of aircraft, but these emissions were nevertheless much lower than in recent years. The PFC emission factors for aluminium production in the early 20th century were significantly higher than today but have decreased since then due to improvements and better control of the smelting process. Mitigation efforts have led to decreases in emissions from peaks in 1980 (CF4) or early-to-mid-2000s (C2F6 and C3F8) despite the continued increase in global aluminium production; however, these decreases in emissions appear to have recently halted. We see a temporary reduction of around 15 % in CF4 emissions in 2009, presumably associated with the impact of the global financial crisis on aluminium and semiconductor production.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference68 articles.
1. Aydin, M., Saltzman, E. S., De Bruyn, W. J., Montzka, S. A., Butler, J. H., and Battle, M.: Atmospheric variability of methyl chloride during the last 300 years from an Antarctic ice core and firn air, Geophys. Res. Lett., 31, L02109, https://doi.org/10.1029/2003GL018 750, 2004. 2. Barber, M. and Tabereaux, A. T.: The Evolution of Soderberg Aluminum Cell Technology in North and South America, JOM, 66, 223–234, https://doi.org/10.1007/s11837-013-0855-1, 2014. 3. Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger, C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M., Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A., Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M., Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and Blunier, T.: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12, 4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. 4. Butler, J. H., Montzka, S. A., Battle, M., Clarke, A. D., Mondeel, D. J., Lind, J. A., Hall, B. D., and Elkins, J. W.: Collection and Analysis of Firn Air from the South Pole, 2001, AGU Fall Meeting Abstracts, p. F145, 2001. 5. Cicerone, R. J.: Atmospheric carbon tetrafluoride: A nearly inert gas, Science, 206, 59–61, 1979.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|