Greenhouse gas simulations with a coupled meteorological and transport
model: the predictability of CO<sub>2</sub>
-
Published:2016-09-26
Issue:18
Volume:16
Page:12005-12038
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Polavarapu Saroja M.ORCID, Neish Michael, Tanguay Monique, Girard Claude, de Grandpré Jean, Semeniuk Kirill, Gravel Sylvie, Ren Shuzhan, Roche SébastienORCID, Chan Douglas, Strong KimberlyORCID
Abstract
Abstract. A new model for greenhouse gas transport has been developed based on Environment and Climate Change Canada's operational weather and environmental prediction models. When provided with realistic posterior fluxes for CO2, the CO2 simulations compare well to NOAA's CarbonTracker fields and to near-surface continuous measurements, columns from the Total Carbon Column Observing Network (TCCON) and NOAA aircraft profiles. This coupled meteorological and tracer transport model is used to study the predictability of CO2. Predictability concerns the quantification of model forecast errors and thus of transport model errors. CO2 predictions are used to compute model–data mismatches when solving flux inversion problems and the quality of such predictions is a major concern. Here, the loss of meteorological predictability due to uncertain meteorological initial conditions is shown to impact CO2 predictability. The predictability of CO2 is shorter than that of the temperature field and increases near the surface and in the lower stratosphere. When broken down into spatial scales, CO2 predictability at the very largest scales is mainly due to surface fluxes but there is also some sensitivity to the land and ocean surface forcing of meteorological fields. The predictability due to the land and ocean surface is most evident in boreal summer when biospheric uptake produces large spatial gradients in the CO2 field. This is a newly identified source of uncertainty in CO2 predictions but it is expected to be much less significant than uncertainties in fluxes. However, it serves as an upper limit for the more important source of transport error and loss of predictability, which is due to uncertain meteorological analyses. By isolating this component of transport error, it is demonstrated that CO2 can only be defined on large spatial scales due to the presence of meteorological uncertainty. Thus, for a given model, there is a spatial scale below which fluxes cannot be inferred simply due to the fact that meteorological analyses are imperfect. These unresolved spatial scales correspond to small scales near the surface but increase with altitude. By isolating other components of transport error, the largest or limiting error can be identified. For example, a model error due to the lack of convective tracer transport was found to impact transport error on the very largest (wavenumbers less than 5) spatial scales. Thus for wavenumbers greater than 5, transport model error due to meteorological analysis uncertainty is more important for our model than the lack of convective tracer transport.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference134 articles.
1. Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., Deutscher, N. M., Engelen, R., Jones, L., Kivi, R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen, A. T., Wennberg, P. O., and Wunch, D.: Forecasting global atmospheric CO2, Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, 2014. 2. Agusti-Panareda, A., Diamantakis, M., Bayona, V., Klappenbach, F., and Butz, A.: Improving the inter-hemispheric gradient of total column atmospheric CO2 and CH4 in simulations with the ECMWF semi-Lagrangian atmospheric global model, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-143, in review, 2016. 3. Aliabadi, A. A, Staebler, R. M., de Grandpré, J., Zadra, A., and Vaillancourt, P. A.: Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions: Experimental and Numerical Aspects, Atmos.-Ocean, 54, 60–74, 2016. 4. Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, San Diego, California, 1987. 5. Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002, https://doi.org/10.1029/2004GB002439, 2006a.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|