Drainage and tillage practices in the winter fallow season mitigate CH<sub>4</sub> and N<sub>2</sub>O emissions from a double-rice field in China

Author:

Zhang GuangbinORCID,Yu Haiyang,Fan Xianfang,Yang Yuting,Ma Jing,Xu Hua

Abstract

Abstract. Traditional land management (no tillage, no drainage, NTND) during the winter fallow season results in substantial CH4 and N2O emissions from double-rice fields in China. A field experiment was conducted to investigate the effects of drainage and tillage during the winter fallow season on CH4 and N2O emissions and to develop mitigation options. The experiment had four treatments: NTND, NTD (drainage but no tillage), TND (tillage but no drainage), and TD (both drainage and tillage). The study was conducted from 2010 to 2014 in a Chinese double-rice field. During winter, total precipitation and mean daily temperature significantly affected CH4 emission. Compared to NTND, drainage and tillage decreased annual CH4 emissions in early- and late-rice seasons by 54 and 33 kg CH4 ha−1 yr−1, respectively. Drainage and tillage increased N2O emissions in the winter fallow season but reduced it in early- and late-rice seasons, resulting in no annual change in N2O emission. Global warming potentials of CH4 and N2O emissions were decreased by 1.49 and 0.92 t CO2 eq. ha−1 yr−1, respectively, and were reduced more by combining drainage with tillage, providing a mitigation potential of 1.96 t CO2 eq. ha−1 yr−1. A low total C content and high C / N ratio in rice residues showed that tillage in the winter fallow season reduced CH4 and N2O emissions in both early- and late-rice seasons. Drainage and tillage significantly decreased the abundance of methanogens in paddy soil, and this may explain the decrease of CH4 emissions. Greenhouse gas intensity was significantly decreased by drainage and tillage separately, and the reduction was greater by combining drainage with tillage, resulting in a reduction of 0.17 t CO2 eq. t−1. The results indicate that drainage combined with tillage during the winter fallow season is an effective strategy for mitigating greenhouse gas releases from double-rice fields.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3