Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l.) and remote site in the central Qinghai–Tibet Plateau

Author:

Ci ZhijiaORCID,Peng Fei,Xue XianORCID,Zhang Xiaoshan

Abstract

Abstract. The pattern of air–surface gaseous mercury (mainly Hg(0)) exchange in the Qinghai–Tibet Plateau (QTP) may be unique because this region is characterized by low temperature, great temperature variation, intensive solar radiation, and pronounced freeze–thaw process of permafrost soils. However, the air–surface Hg(0) flux in the QTP is poorly investigated. In this study, we performed field measurements and controlled field experiments with dynamic flux chambers technique to examine the flux, temporal variation and influencing factors of air–surface Hg(0) exchange at a high-altitude (4700 m a.s.l.) and remote site in the central QTP. The results of field measurements showed that surface soils were the net emission source of Hg(0) in the entire study (2.86 ng m−2 h−1 or 25.05 µg m−2 yr−1). Hg(0) flux showed remarkable seasonality with net high emission in the warm campaigns (June 2014: 4.95 ng m−2 h−1; September 2014: 5.16 ng m−2 h−1; and May–June 2015: 1.95 ng m−2 h−1) and net low deposition in the winter campaign (December 2014: −0.62 ng m−2 h−1) and also showed a diurnal pattern with emission in the daytime and deposition in nighttime, especially on days without precipitation. Rainfall events on the dry soils induced a large and immediate increase in Hg(0) emission. Snowfall events did not induce the pulse of Hg(0) emission, but snowmelt resulted in the immediate increase in Hg(0) emission. Daily Hg(0) fluxes on rainy or snowy days were higher than those of days without precipitation. Controlled field experiments suggested that water addition to dry soils significantly increased Hg(0) emission both on short (minutes) and relatively long (hours) timescales, and they also showed that UV radiation was primarily attributed to Hg(0) emission in the daytime. Our findings imply that a warm climate and environmental change could facilitate Hg release from the permafrost terrestrial ecosystem in the QTP.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3