Analysis of the latitudinal variability of tropospheric ozone in the Arctic using
the large number of aircraft and ozonesonde observations in early summer 2008
-
Published:2016-10-28
Issue:20
Volume:16
Page:13341-13358
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ancellet GerardORCID, Daskalakis NikosORCID, Raut Jean ChristopheORCID, Tarasick David, Hair Jonathan, Quennehen Boris, Ravetta François, Schlager Hans, Weinheimer Andrew J., Thompson Anne M., Johnson Bryan, Thomas Jennie L., Law Katharine S.
Abstract
Abstract. During the 2008 International Polar Year, the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport) campaign, conducted in summer over Greenland and Canada, produced a large number of measurements from three aircraft and seven ozonesonde stations. Here we present an observation-integrated analysis based on three different types of O3 measurements: airborne lidar, airborne UV absorption or chemiluminescence measurement, and intensified electrochemical concentration cell (ECC) ozonesonde profiles. Discussion of the latitudinal and vertical variability of tropospheric ozone north of 55° N during this period is performed with the aid of a regional model (WFR-Chem). The model is able to reproduce the O3 latitudinal and vertical variability but with a negative O3 bias of 6–15 ppbv in the free troposphere above 4 km, especially over Canada. For Canada, large average CO concentrations in the free troposphere above 4 km ( > 130 ppbv) and the weak correlation (< 30 %) of O3 and PV suggest that stratosphere–troposphere exchange (STE) is not the major contributor to average tropospheric ozone at latitudes less than 70° N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely, significant STE is found over Greenland according to the better O3 vs. PV correlation ( > 40 %) and the higher values of the 75th PV percentile. It is related to the persistence of cyclonic activity during the summer over Baffin Bay. Using differences between average concentration above Northern and Southern Canada, a weak negative latitudinal summer ozone gradient of −6 to −8 ppbv is found in the mid-troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production from BB emissions at latitudes less than 65° N, while the STE contribution is more homogeneous in the latitude range 55–70° N. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long-range transport from multiple mid-latitude sources (North America, Europe, and even Asia for latitudes higher than 77° N). For the Arctic latitudes (> 80° N), free tropospheric O3 concentrations during summer 2008 are related to a mixture of Asian pollution and stratospheric O3 transport across the tropopause.
Funder
Seventh Framework Programme
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012. 2. Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., Clair, J. M. St., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010. 3. AMAP: Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP), Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 1–116, available at: http://www.amap.no/documents/doc/, 2015. 4. Ancellet, G.: CNRS ATR-42 aircraft ozone lidar observations, LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Université, UVSQ, CNRS, Paris, France, available: ftp://polarcat@ftp.aero.jussieu.fr/Kanger/LidarO3/, 2009a. 5. Ancellet, G.: CNRS ATR-42 ozone in-situ measurements, LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France, avilable at: ftp://ftp.aero.jussieu.fr/Kanger/Data_ATR/, 2009b.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|