Generation and propagation of stick-slip waves over a fault with rate-independent friction

Author:

Karachevtseva Iuliia,Dyskin Arcady V.ORCID,Pasternak Elena

Abstract

Abstract. Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events. It is conventionally assumed that the mechanism of stick-slip over geo-materials lies in the rate dependence of friction. However, the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which occurs irrespective of the rate properties of the friction. In order to investigate this mechanism, two simple models are considered in this paper: a mass-spring model of self-maintaining oscillations and a one-dimensional (1-D) model of wave propagation through an infinite elastic rod. The rod slides with friction over a stiff base. The sliding is resisted by elastic shear springs. The results show that the frictional sliding in the mass-spring model generates oscillations that resemble the stick-slip motion. Furthermore, it was observed that the stick-slip-like motion occurs even when the frictional coefficient is constant. The 1-D wave propagation model predicts that despite the presence of shear springs the frictional sliding waves move with the P wave velocity, denoting the wave as intersonic. It was also observed that the amplitude of sliding is decreased with time. This effect might provide an explanation to the observed intersonic rupture propagation over faults.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3