Interaction of katabatic wind and local surface mass balance at Scharffenbergbotnen Blue Ice Area, Antarctica

Author:

Zwinger T.ORCID,Malm T.,Schäfer M.,Stenberg R.,Moore J. C.

Abstract

Abstract. We model the wind causing the formation of a blue ice area in Scharffenbergbotnen valley, Antarctica, using the finite element code Elmer. The high resolution numerical simulations of the local wind flow from katabatic wind fronts show highly spatially variable wind impact patterns and good congruence between places of enhanced wind-impact and the blue ice area. The results were fortuitously confirmed by the destruction of a field camp located in a high wind speed area and its subsequent redistribution to low velocity areas. In addition we perform wind simulations on an altered glacier geometry that resembles the thicker ice cover at the Late Glacial Maximum (LGM). These simulations indicate that the pronounced spatial wind-impact patterns depend on present day geometry and did not occur during the LGM. This leads to the conclusion that the formation of the blue ice area that is situated more inside the valley of Scharffenbergbotnen started only after the lowering of the ice surface, later than the LGM. Experiments with smoothed surface topography suggest that detailed positions of the high wind regions and hence individual blue ice fields, may have varied as the ice sheet lowered. The experiments and the field observations are consistent with localized violent katabatic events, rather than synoptic scale storms, playing the dominant role in the formation and maintenance of this, and perhaps many blue ice areas.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3