Temperature and water vapour measurements in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC)

Author:

De Rosa Benedetto,Di Girolamo Paolo,Summa DonatoORCID

Abstract

Abstract. The BASIL Raman lidar system entered the International Network for the Detection of Atmospheric Composition Change (NDACC) in 2012. Since then, measurements have been carried out routinely on a weekly basis. This paper reports specific measurement results from this effort, with a dedicated focus on temperature and water vapour profile measurements. The main objective of this research effort is to provide a characterisation of the system performance. The results illustrated in this publication demonstrate the ability of BASIL to perform measurements of the temperature profile up to 50 km and of the water vapour mixing ratio profile up to 15 km, when considering an integration time of 2 h and a vertical resolution of 150–600 m; the mean measurement accuracy, determined based on comparisons with simultaneous and co-located radiosondes, is 0.1 K (for the temperature profile) and 0.1 g kg−1 (for the water vapour mixing ratio profile) up to the upper troposphere. The relative humidity profiling capability up to the tropopause is also demonstrated by combining simultaneous temperature and water vapour profile measurements. Raman lidar measurements are compared with measurements from additional instruments, such as radiosondes and satellite sensors (IASI and AIRS), as well as with model reanalyses data (ECMWF and ECMWF-ERA). We focused our attention on six case studies collected during the first 2 years of system operation (November 2013–October 2015). Comparisons between BASIL and the different sensor/model data in terms of the water vapour mixing ratio indicate biases in the altitudinal interval between 2 and 15 km that are always within ±1 g kg−1 (or ±50 %), with minimum values being observed in the comparison between BASIL and radiosonde measurements (±20 % up to 15 km). Results also indicate a vertically averaged mean mutual bias of −0.026 g kg−1 (or −3.8 %), 0.263 g kg−1 (or 30.0 %), 0.361 g kg−1 (or 23.5 %), −0.297 g kg−1 (or −25 %) and −0.296 g kg−1 (or −29.6 %) when comparing BASIL with radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. The vertically averaged mean absolute mutual biases are somewhat higher, i.e. 0.05 g kg−1(or 16.7 %), 0.39 g kg−1 (or 23.0 %), 0.57 g kg−1 (or 23.5 %), 0.32 g kg−1 (or 29.6 %) and 0.52 g kg−1 (or 53.3 %), when comparing BASIL with radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. The comparisons in terms of temperature measurements indicate mutual biases in the altitudinal interval between 3 and 30 km that are always within ±3 K, with minimum values being observed in the comparison between BASIL and radiosonde measurements (±2 K within this same altitudinal interval). Results also reveal mutual biases within ±3 K up to 50 km for most sensor/model pairs. Furthermore, a vertically averaged mean mutual bias of −0.03, 0.21, 1.95, 0.14 and 0.43 K is found between BASIL and the radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. The vertically averaged absolute mean mutual biases between BASIL and the radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA are 1.28, 1.30, 3.50, 1.76 and 1.63 K respectively. Based on the available dataset and benefiting from the fact that the BASIL Raman lidar could be compared with all other sensor/model data, it was possible to estimate the overall bias of all sensors/datasets: −0.04 g kg−1 ∕ 0.19 K, 0.20 g kg−1 ∕ 0.22 K, −0.31 g kg−1 ∕ −0.02 K, −0.40 g kg−1 ∕ −1.76 K, 0.25 g kg−1 ∕ 0.04 K and 0.25 g kg−1 ∕ −0.24 K for the water vapour mixing ratio/temperature profile measurements carried out by BASIL, the radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference68 articles.

1. Bennett, L. J., Blyth, A. M., Burton, R. R., Gadian, A. M., Weckwerth, T. M., Behrendt, A., Di Girolamo, P., Dorninger, M., Lock, S.-J., Smith, V. H., and Mobbs, S. D.: Initiation of convection over the Black Forest mountains during COPS IOP15a, Q. J. Roy. Meteor. Soc., 137, 176–189, https://doi.org/10.1002/qj.760, 2011.

2. Bhawar, R., Bianchini, G., Bozzo, A., Cacciani, M., Calvello, M.R., Carlotti, M., Castagnoli, F., Cuomo, V., Di Girolamo, P., Di Iorio, T., Di Liberto, L., di Sarra, A., Esposito, F., Fiocco, G., Fua, D., Grieco, G., Maestri, T., Masiello, G., Muscari, G., Palchetti, L., Papandrea, E., Pavese, G., Restieri, R., Rizzi, R., Romano, F., Serio, C., Summa, D., Todini, G., and Tosi, E.: Spectrally Resolved Observations of Atmospheric Emitted Radiance in the H2O Rotation Band, Geophys. Res. Lett., 35, L04812, https://doi.org/10.1029/2007GL032207, 2008.

3. Bhawar, R., Di Girolamo, P., Summa, D., Flamant, C., Althausen, D., Behrendt, A., Kiemle, C., Bosser, P., Cacciani, M., Champollion, C., Di Iorio, T., Engelmann, R., Herold, C., Müller, D., Pal, S., Wirth, M., and Wulfmeyer, V.: The Water Vapour Intercomparison Effort in the Framework of the Convective and Orographically-Induced Precipitation Study: Airborne-to-Ground-based and airborne-to-airborne Lidar Systems, Q. J. Roy. Meteor. Soc., 137, 325–348, 2011.

4. Behrendt, A. and Reichardt, J.: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator, Appl. Opt., 39, 1372–1378, 2000.

5. Behrendt, A.: Temperature measurements whth lidar in: Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, edited by: Weitkamp, C., Springer, New York, 460 pp., 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3