Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing

Author:

Cox Stephen E.ORCID,Miller Hayden B. D.,Hofmann Florian,Farley Kenneth A.

Abstract

Abstract. A pervasive challenge in noble gas geochemistry is to ensure that analytical techniques do not modify the composition of the noble gases in the samples. Noble gases are present in the atmosphere and are used in a number of manufacturing procedures and by laboratory equipment. Of particular concern is the introduction of atmospheric or laboratory noble gases to samples during preparation before samples are placed in a vacuum chamber for analysis. Recent work has shown the potential for contamination of crushed samples with air-derived He that is not released by placing the samples under vacuum at room temperature. Using pure He gas as a tracer, we show that the act of crushing samples to a fine powder itself can introduce He contamination but that this is easily avoided by crushing under liquid or in an inert atmosphere. Because the He is trapped during crushing, the same concern does not extend to samples that are naturally fine-grained when collected. We also show model results that demonstrate when this effect might significantly impact samples for (U–Th) / He geochronology or 3He cosmogenic nuclide dating. The degree of He contamination from crushing samples to sizes smaller than the > 63 µm range typically used for geochronology is insignificant for samples with a date of at least 1 Ma and 1 ppm U, and the degree of He contamination from crushing samples to sizes smaller than the 100–500 µm range typically used for cosmogenic nuclide dating is also insignificant for samples with a date of at least 10 ka with typical 3He production rates.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3