Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications

Author:

Subarkah DarwinajiORCID,Nixon Angus L.,Jimenez Monica,Collins Alan S.ORCID,Blades Morgan L.ORCID,Farkaš Juraj,Gilbert Sarah E.,Holford Simon,Jarrett Amber

Abstract

Abstract. Recent developments in tandem laser ablation mass spectrometer technology have demonstrated the capacity for separating parent and daughter isotopes of the same mass online. As a result, beta-decay chronometers can now be applied to the geological archive in situ as opposed to through traditional whole-rock digestions. One novel application of this technique is the in situ Rb–Sr dating of Proterozoic shales that are dominated by authigenic clays such as illite. This method can provide a depositional window for shales by differentiating signatures of early diagenetic processes versus late-stage secondary alteration. However, the hydrothermal sensitivity of the Rb–Sr isotopic system across geological timescales in shale-hosted clay minerals is not well understood. As such, we dated the Mesoproterozoic Velkerri Formation from the Altree 2 well in the Beetaloo Sub-basin (greater McArthur Basin), northern Australia, using this approach. We then constrained the thermal history of these units using common hydrocarbon maturity indicators and modelled effects of contact heating due to the intrusion of the Derim Derim Dolerite. In situ Rb–Sr dating of mature, oil-prone shales in the diagenetic zone from the Velkerri Formation yielded ages of 1448 ± 81, 1434 ± 19, and 1421 ± 139 Ma. These results agree with previous Re–Os dating of the unit and are interpreted as recording the timing of an early diagenetic event soon after deposition. Conversely, overmature, gas-prone shales in the anchizone sourced from deeper within the borehole were dated at 1322 ± 93 and 1336 ± 40 Ma. These ages are younger than the expected depositional window for the Velkerri Formation. Instead, they are consistent with the age of the Derim Derim Dolerite mafic intrusion intersected 800 m below the Velkerri Formation. Thermal modelling suggests that a single intrusion of 75 m thickness would have been capable of producing a significant hydrothermal perturbation radiating from the sill top. The intrusion width proposed by this model is consistent with similar Derim Derim Dolerite sill thicknesses found elsewhere in the McArthur Basin. The extent of the hydrothermal aureole induced by this intrusion coincides with the window in which kerogen from the Velkerri Formation becomes overmature. As a result, the mafic intrusion intersected here is interpreted to have caused kerogen in these shales to enter the gas window, induced fluids that mobilize trace elements, and reset the Rb–Sr chronometer. Consequently, we propose that the Rb–Sr chronometer in shales may be sensitive to temperatures of ca. 120 ∘C in hydrothermal reactions but can withstand temperatures of more than 190 ∘C in thermal systems not dominated by fluids. Importantly, this study demonstrates a framework for the combined use of in situ Rb–Sr dating and kerogen maturation indicators to help reveal the thermochronological history of Proterozoic sedimentary basins. As such, this approach can be a powerful tool for identifying the hydrocarbon potential of source rocks in similar geological settings.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Subject

General Medicine

Reference184 articles.

1. Abad, I. and Nieto, F.: Physical meaning and applications of the illite Kübler index: measuring reaction progress in low-grade metamorphism, Diagenesis and Low-Temperature Metamorphism, Theory, Methods and Regional Aspects, Seminarios, Sociedad Espanola: Sociedad Espanola Mineralogia, 53–64, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.556.7352&rep=rep1&type=pdf (last access: 25 August 2022), 2007.

2. Abbott, S. T. and Sweet, I. P.: Tectonic control on third-order sequences in a siliciclastic ramp-style basin: An example from the Roper Superbasin (Mesoproterozoic), northern Australia, Aust. J. Earth Sci., 47, 637–657, https://doi.org/10.1046/j.1440-0952.2000.00795.x, 2000.

3. Abbott, S. T., Sweet, I. P., Plumb, K. A., Young, D. N., Cutovinos, A., Ferenczi, P. A., and Pietsch, B. A.: Roper Region: Urapunga and Roper River Special, Northern Territory (Second Edition), 1 : 250 000 geological map series explanatory notes, SD 53-10, 11, Northern Territory Geological Survey and Geoscience Australia, Darwin, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81859 (last access: 25 August 2022), 2001.

4. Ahmad, A. and Munson, T. J.: Geology and mineral resources of the Northern Territory, Special Publication, edited by: Munson, T. J., Johnston, K. J., and Fuller, M. H., Northern Territory Geological Survey, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81446 (last access: 25 August 2022), 2013.

5. Árkai, P., Sassi, F., and Desmons, J.: Towards a unified nomenclature in metamorphic petrology: 4, Very low-to low-grade metamorphic rocks. A proposal on behalf of the IUGS Subcommission on the Systematics of Metamorphic Rocks, International Union of Geological Sciences (IUGS), https://www.ugr.es/~agcasco/personal/IUGS/pdf-IUGS/scmr_low_r2_verylowtolowgrademetamorphicrocks.pdf (last access: 25 August 2022)​​​​​​​, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3