Investigation of quartz electron spin resonance residual signals in the last glacial and early Holocene fluvial deposits from the Lower Rhine
-
Published:2022-01-25
Issue:1
Volume:4
Page:55-63
-
ISSN:2628-3719
-
Container-title:Geochronology
-
language:en
-
Short-container-title:Geochronology
Author:
Richter MarcusORCID, Tsukamoto SumikoORCID
Abstract
Abstract. In this study, we examined the residual doses of the quartz electron spin resonance (ESR) signals from eight young fluvial sediments with known luminescence ages from the Lower Rhine terraces. The single aliquot regenerative (SAR) protocol was applied to obtain the residual doses for both the aluminium (Al) and titanium (Ti) impurity centres. We show that all of the fluvial samples carry a significant amount of residual dose with a mean value of 1270 ± 120 Gy for the Al centre (including the unbleachable signal component), 591 ± 53 Gy for the lithium-compensated Ti centre (Ti-Li), 170 ± 21 Gy for the hydrogen-compensated Ti centre (Ti-H) and 453 ± 42 Gy for the signal that originated from both the Ti-Li and Ti-H centres (termed Ti-mix). To test the accuracy of the ESR SAR protocol, a dose recovery test was conducted and this confirmed the validity of the Ti-Li and Ti-mix signal results. The Al centre shows a dose recovery ratio of 1.75 ± 0.18, whereas the Ti-H signal shows a ratio of 0.55 ± 0.17, suggesting that the rate of signal production per unit dose changed for these signals after the thermal annealing. Nevertheless, all fluvial sediments investigated in this study carry a significant residual dose. Our result suggests that more direct comparisons between luminescence and ESR equivalent doses should be carried out, and, if necessary, the subtraction of residual dose obtained from the difference is essential to obtain reliable ESR ages.
Publisher
Copernicus GmbH
Reference38 articles.
1. Asagoe, M., Toyoda, S., Voinchet, P., Falguères, C., Tissoux, H., Suzuki, T., and Banerjee, D.: ESR dating of tephra with dose recovery test for impurity centers in quartz, Quatern. Int., 246, 118–123,
https://doi.org/10.1016/j.quaint.2011.06.027, 2011. a 2. Bahain, J.-J., Falguères, C., Laurent, M., Voinchet, P., Dolo, J.-M., Antoine, P., and Tuffreau, A.: ESR chronology of the Somme River Terrace system and first human settlements in Northern France, Quat. Geochronol., 2, 356–362, https://doi.org/10.1016/j.quageo.2006.04.012, 2007. a 3. Bartz, M., Rixhon, G., Duval, M., King, G. E., Álvarez Posada, C., Parés,
J. M., and Brückner, H.: Successful combination of electron spin resonance,
luminescence and palaeomagnetic dating methods allows reconstruction of the
Pleistocene evolution of the lower Moulouya river (NE Morocco),
Quaternary Sci. Rev., 185, 153–171, https://doi.org/10.1016/j.quascirev.2017.11.008, 2018. a, b 4. Bartz, M., Arnold, L., Demuro, M., Duval, M., King, G., Rixhon, G., Álvarez
Posada, C., Parés, J., and Brückner, H.: Single-grain TT-OSL dating
results confirm an Early Pleistocene age for the lower Moulouya River
deposits (NE Morocco), Quat. Geochronol., 49, 138–145,
https://doi.org/10.1016/j.quageo.2018.04.007, 2019. a 5. Bartz, M., Duval, M., Brill, D., Zander, A., King, G. E., Rhein, A., Walk, J., Stauch, G., Lehmkuhl, F., and Brückner, H.: Testing the potential of
K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan
complexes in arid environments, Quatern. Int., 556, 124–143,
https://doi.org/10.1016/j.quaint.2020.03.037, 2020. a, b
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|