In situ Lu–Hf geochronology of calcite

Author:

Simpson Alexander,Glorie Stijn,Hand Martin,Spandler Carl,Gilbert Sarah,Cave Brad

Abstract

Abstract. The ability to constrain the age of calcite formation is of great utility to the Earth science community, due to the ubiquity of calcite across a wide spectrum of geological systems. Here, we present the first in situ laser ablation inductively coupled tandem quadrupole mass spectrometry (LA-ICP-MS/MS) Lu–Hf ages for calcite, demonstrating geologically meaningful ages for iron oxide copper gold (IOCG) and skarn mineralisation, carbonatite intrusion, and low-grade metamorphism. The analysed samples range in age between ca. 0.9 and ca. 2 Ga with uncertainties between 1.7 % and 0.6 % obtained from calcite with Lu concentrations as low as ca. 0.5 ppm. The Lu–Hf system in calcite appears to be able to preserve primary precipitation ages over a significant amount of geological time, although further research is required to constrain the closure temperature. The in situ approach allows calcite to be rapidly dated while maintaining its petrogenetic context with mineralisation and other associated mineral processes. Therefore, LA-ICP-MS/MS Lu–Hf dating of calcite can be used to resolve the timing of complex mineral paragenetic sequences that are a feature of many ancient rock systems.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3