Paleoclimate in continental northwestern Europe during the Eemian and early
Weichselian (125–97 ka): insights from a Belgian speleothem
-
Published:2016-07-05
Issue:7
Volume:12
Page:1445-1458
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Vansteenberge Stef, Verheyden Sophie, Cheng Hai, Edwards R. Lawrence, Keppens Eddy, Claeys PhilippeORCID
Abstract
Abstract. The last interglacial serves as an excellent time interval for studying climate dynamics during past warm periods. Speleothems have been successfully used for reconstructing the paleoclimate of last interglacial continental Europe. However, all previously investigated speleothems are restricted to southern Europe or the Alps, leaving large parts of northwestern Europe undocumented. To better understand regional climate changes over the past, a larger spatial coverage of European last interglacial continental records is essential, and speleothems, because of their ability to obtain excellent chronologies, can provide a major contribution. Here, we present new, high-resolution data from a stalagmite (Han-9) obtained from the Han-sur-Lesse Cave in Belgium. Han-9 formed between 125.3 and ∼ 97 ka, with interruptions of growth occurring at 117.3–112.9 and 106.6–103.6 ka. The speleothem was investigated for its growth, morphology and stable isotope (δ13C and δ18O) composition. The speleothem started growing relatively late within the last interglacial, at 125.3 ka, as other European continental archives suggest that Eemian optimum conditions were already present during that time. It appears that the initiation of Han-9 growth is caused by an increase in moisture availability, linked to wetter conditions around 125.3 ka. The δ13C and δ18O proxies indicate a period of relatively stable conditions after 125.3 ka; however, at 120 ka the speleothem δ18O registered the first signs of regionally changing climate conditions, being a modification of ocean source δ18O linked to an increase in ice volume towards the Marine Isotope Stage (MIS) 5e–5d transition. At 117.5 ka, drastic vegetation changes are recorded by Han-9 δ13C immediately followed by a cessation of speleothem growth at 117.3 ka, suggesting a transition to significantly dryer conditions. The Han-9 record covering the early Weichselian displays larger amplitudes in both isotope proxies and changes in stalagmite morphology, evidencing increased variability compared to the Eemian. Stadials that appear to be analogous to those in Greenland are recognized in Han-9, and the chronology is consistent with other European (speleothem) records. Greenland Stadial 25 is reflected as a cold/dry period within Han-9 stable isotope proxies, and the second interruption in speleothem growth occurs simultaneously with Greenland Stadial 24.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Global and Planetary Change
Reference79 articles.
1. Baker, A., Ito, E., Smart, P. L., and McEwan, R. F.: Elevated and variable values of C-13 in speleothems in a British cave system, Chemical Geology, 136, 263-270, 10.1016/s0009-2541(96)00129-5, 1997. 2. Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G. J.: The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel, Earth Planet. Sci. Lett., 166, 85–95, https://doi.org/10.1016/S0012-821X(98)00275-1, 1999. 3. Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–336, 2015. 4. Bastin, B. and Gewelt, M.: Analyse pollinique et datation 14C de concrétions stalagmitiques Holocènes: apportes complémentaires des deux méthodes, Géographie Physique et Quaternaire, 40, 185–196, 1986. 5. Berger, A. and Loutre, M. F.: An Exceptionally Long Interglacial Ahead?, Science, 297, 1287–1288, https://doi.org/10.1126/science.1076120, 2002.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|