Precambrian faulting episodes and insights into the tectonothermal history of north Australia: microstructural evidence and K–Ar, <sup>40</sup>Ar–<sup>39</sup>Ar, and Rb–Sr dating of syntectonic illite from the intracratonic Millungera Basin

Author:

Uysal I. TonguçORCID,Delle Piane Claudio,Todd Andrew JamesORCID,Zwingmann Horst

Abstract

Abstract. Australian terranes concealed beneath Mesozoic cover record complex Precambrian tectonic histories involving a successive development of several Proterozoic to Palaeozoic orogenic systems. This study presents an integrated approach combining K–Ar, 40Ar–39Ar, and Rb–Sr geochronologies of Precambrian authigenic illites from the recently discovered Millungera Basin in north-central Australia. Brittle deformation and repeated fault activity are evident from the sampled cores and their microstructures, probably associated with the large-scale faults inferred from interpretations of seismic surveys. Rb–Sr isochron, 40Ar–39Ar total gas, and K–Ar ages are largely consistent in indicating late Mesoproterozoic and early Proterozoic episodes (∼1115±26, ∼ 1070±25, ∼1040±24, ∼1000±23, and ∼905±21 Ma) of active tectonics in north-central Australia. K–Ar results show that illites from fault gouges and authigenic matrix illites in undeformed adjacent sandstones precipitated contemporaneously, indicating that advection of tectonically mobilized fluids extended into the undeformed wall rocks above or below the fracture and shear (fault gouge) zones. Isotopic age data clearly indicate a Mesoproterozoic minimum age for the Millungera Basin and thus previously unrecorded late Mesoproterozoic–early Neoproterozoic tectonic events in north-central Australia. This study provides insight into the enigmatic time–space distribution of Precambrian tectonic zones in central Australia, which are responsible for the formation of a number of sedimentary basins with significant energy and mineral resources.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3