Microstructure representation of snow in coupled snowpack and microwave emission models

Author:

Sandells MelodyORCID,Essery RichardORCID,Rutter NickORCID,Wake Leanne,Leppänen LeenaORCID,Lemmetyinen JuhaORCID

Abstract

Abstract. This is the first study to encompass a wide range of coupled snow evolution and microwave emission models in a common modelling framework in order to generalise the link between snowpack microstructure predicted by the snow evolution models and microstructure required to reproduce observations of brightness temperature as simulated by snow emission models. Brightness temperatures at 18.7 and 36.5 GHz were simulated by 1323 ensemble members, formed from 63 Jules Investigation Model snowpack simulations, three microstructure evolution functions, and seven microwave emission model configurations. Two years of meteorological data from the Sodankylä Arctic Research Centre, Finland, were used to drive the model over the 2011–2012 and 2012–2013 winter periods. Comparisons between simulated snow grain diameters and field measurements with an IceCube instrument showed that the evolution functions from SNTHERM simulated snow grain diameters that were too large (mean error 0.12 to 0.16 mm), whereas MOSES and SNICAR microstructure evolution functions simulated grain diameters that were too small (mean error −0.16 to −0.24 mm for MOSES and −0.14 to −0.18 mm for SNICAR). No model (HUT, MEMLS, or DMRT-ML) provided a consistently good fit across all frequencies and polarisations. The smallest absolute values of mean bias in brightness temperature over a season for a particular frequency and polarisation ranged from 0.7 to 6.9 K. Optimal scaling factors for the snow microstructure were presented to compare compatibility between snowpack model microstructure and emission model microstructure. Scale factors ranged between 0.3 for the SNTHERM–empirical MEMLS model combination (2011–2012) and 3.3 for DMRT-ML in conjunction with MOSES microstructure (2012–2013). Differences in scale factors between microstructure models were generally greater than the differences between microwave emission models, suggesting that more accurate simulations in coupled snowpack–microwave model systems will be achieved primarily through improvements in the snowpack microstructure representation, followed by improvements in the emission models. Other snowpack parameterisations in the snowpack model, mainly densification, led to a mean brightness temperature difference of 11 K at 36.5 GHz H-pol and 18 K at V-pol when the Jules Investigation Model ensemble was applied to the MOSES microstructure and empirical MEMLS emission model for the 2011–2012 season. The impact of snowpack parameterisation increases as the microwave scattering increases. Consistency between snowpack microstructure and microwave emission models, and the choice of snowpack densification algorithms should be considered in the design of snow mass retrieval systems and microwave data assimilation systems.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3