Morphometric traits of shells determine external attack and internal utilization marks in the Roman snail in eastern Germany

Author:

Tluste Claudia,Bröring Udo,Němec Tomáš,Birkhofer Klaus

Abstract

Abstract. Overexploitation, habitat destruction and a changing climate threaten populations of the Roman snail (Helix pomatia Linnaeus, 1758), which has led to a high protection status in Germany. Vertebrate and invertebrate predators, including parasites and facultative parasitoids, further cause pressure on populations. Given the conservation concern for H. pomatia and its rarity in the study region (Cottbus, Germany), we studied how predators and facultative parasitoids utilize H. pomatia shells with a focus on non-invasive field methods. As previous studies indicated that shell size may affect prey selection by predators, morphometric traits were measured in eight subpopulations. We identified the total number and percentage of H. pomatia shells that showed external attack marks by predators and internal utilization marks by Diptera pupae and related those utilization patterns to the morphometric traits of shells. A large proportion of the shells in local subpopulations showed signs of external attack and internal utilization, and both utilization forms were positively correlated. External attacks by predators were more frequent in larger shells and internal utilization by Diptera was more common in shells with higher body density. These results suggest a considerable pressure by predators and potential facultative parasitoids on H. pomatia populations in the study area. Future research should focus on the relationship between snails from the family Helicidae and flies from the genus Discomyza. Conservation programmes should consider abiotic habitat conditions together with potential trophic interactions to maximize the success of conservation strategies.

Publisher

Copernicus GmbH

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3