A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia

Author:

Bittner LucasORCID,De Jonge Cindy,Gil-Romera GracielaORCID,Lamb Henry F.,Russell James M.,Zech Michael

Abstract

Abstract. Eastern Africa has experienced strong climatic changes since the last deglaciation (15 000 years ago). The driving mechanisms and teleconnections of these spatially complex climate variations are yet not fully understood. Although previous studies on lake systems have enhanced our knowledge of Holocene precipitation variation in eastern Africa, relatively few studies have reconstructed the terrestrial temperature history of eastern Africa from lake archives. Here, we present (i) a new branched glycerol dialkyl glycerol tetraether (brGDGT) temperature calibration that includes Bale Mountains surface sediments and (ii) a quantitative record of mean annual air temperature (MAT) over the past 12 ka cal BP using brGDGTs in a sediment core collected from Garba Guracha (3950 m a.s.l.) in the Bale Mountains. After adding Bale Mountains surface sediment (n=11) data (Baxter et al., 2019) to the existing East African lake dataset, additional variation in 6-methyl brGDGTs was observed, which necessitated modifying the MBT5ME′ calibration (MBT denotes methylation of branched tetraethers) by adding 6-methyl brGDGT IIIa′ (resulting in the MBT Bale Mountains index, r2=0.93, p<0.05). Comparing the MBT5ME′ and the new MBT Bale Mountains index, our high-altitude Garba Guracha temperature record shows that warming occurred shortly after the Holocene onset when the temperature increased by more than 3.0 ∘C in less than 600 years. The highest temperatures prevailed between 9 and 6 ka cal BP, followed by a temperature decrease until 1.4 ka cal BP. The reconstructed temperature history is linked to supraregional climatic changes associated with insolation forcing and the African Humid Period (AHP), as well as with local anomalies associated with catchment deglaciation and hydrology.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3