Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake
-
Published:2016-03-21
Issue:6
Volume:16
Page:3711-3726
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Whelan Mary E.ORCID, Hilton Timothy W.ORCID, Berry Joseph A., Berkelhammer MaxORCID, Desai Ankur R.ORCID, Campbell J. Elliott
Abstract
Abstract. Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from five new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.
Funder
Division of Atmospheric and Geospace Sciences Division of Biological Infrastructure
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference57 articles.
1. Anderson, R. G. and Goulden, M. L.: Relationships between climate,
vegetation, and energy exchange across a montane gradient, J. Geophys.
Res.-Biogeo., 116, G01026,
https://doi.org/10.1029/2010JG001476,
2011. 2. Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A., and
Yakir, D.: Ecosystem photosynthesis inferred from measurements of carbonyl
sulphide flux, Nat. Geosci., 6, 186–190,
https://doi.org/10.1038/ngeo1730, 2013. 3. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N.,
Rödenbeck, C., Arain, M. A., Baldocchi, D., and Bonan, G. B.: Terrestrial
gross carbon dioxide uptake: global distribution and covariation with
climate, Science, 329, 834–838,
https://doi.org/10.1126/science.1184984,
2010. 4. Behrendt, T., Veres, P. R., Ashuri, F., Song, G., Flanz, M., Mamtimin, B.,
Bruse, M., Williams, J., and Meixner, F. X.: Characterisation of NO
production and consumption: new insights by an improved laboratory dynamic
chamber technique, Biogeosciences, 11, 5463–5492,
https://doi.org/10.5194/bg-11-5463-2014, 2014. 5. Berkelhammer, M., Asaf, D., Still, C., Montzka, S., Noone, D., Gupta, M.,
Provencal, R., Chen, H., and Yakir, D.: Constraining surface carbon fluxes
using in situ measurements of carbonyl sulfide and carbon dioxide, Global
Biogeochem. Cy., 28, 161–179,
https://doi.org/10.1002/2013GB004644,
2014.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|