Atmospheric methane evolution the last 40 years
-
Published:2016-03-09
Issue:5
Volume:16
Page:3099-3126
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Dalsøren Stig B., Myhre Cathrine L., Myhre GunnarORCID, Gomez-Pelaez Angel J.ORCID, Søvde Ole A., Isaksen Ivar S. A., Weiss Ray F.ORCID, Harth Christina M.
Abstract
Abstract. Observations at surface sites show an increase in global mean surface methane (CH4) of about 180 parts per billion (ppb) (above 10 %) over the period 1984–2012. Over this period there are large fluctuations in the annual growth rate. In this work, we investigate the atmospheric CH4 evolution over the period 1970–2012 with the Oslo CTM3 global chemical transport model (CTM) in a bottom-up approach. We thoroughly assess data from surface measurement sites in international networks and select a subset suited for comparisons with the output from the CTM. We compare model results and observations to understand causes for both long-term trends and short-term variations. Employing Oslo CTM3 we are able to reproduce the seasonal and year-to-year variations and shifts between years with consecutive growth and stagnation, both at global and regional scales. The overall CH4 trend over the period is reproduced, but for some periods the model fails to reproduce the strength of the growth. The model overestimates the observed growth after 2006 in all regions. This seems to be explained by an overly strong increase in anthropogenic emissions in Asia, having global impact. Our findings confirm other studies questioning the timing or strength of the emission changes in Asia in the EDGAR v4.2 emission inventory over recent decades. The evolution of CH4 is not only controlled by changes in sources, but also by changes in the chemical loss in the atmosphere and soil uptake. The atmospheric CH4 lifetime is an indicator of the CH4 loss. In our simulations, the atmospheric CH4 lifetime decreases by more than 8 % from 1970 to 2012, a significant reduction of the residence time of this important greenhouse gas. Changes in CO and NOx emissions, specific humidity, and ozone column drive most of this, and we provide simple prognostic equations for the relations between those and the CH4 lifetime. The reduced lifetime results in substantial growth in the chemical CH4 loss (relative to its burden) and dampens the CH4 growth.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference88 articles.
1. Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A.,
Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel
emissions of ethane and methane derived from firn air, Nature, 476, 198–201,
2011. 2. Bânda, N., Krol, M., van Weele, M., van Noije, T., and Röckmann, T.:
Analysis of global methane changes after the 1991 Pinatubo volcanic eruption,
Atmos. Chem. Phys., 13, 2267–2281, https://doi.org/10.5194/acp-13-2267-2013, 2013. 3. Bekki, S. and Law, K. S.: Sensitivity of the atmospheric CH4 growth rate
to global temperature changes observed from 1980 to 1992, Tellus B, 49,
409–416, https://doi.org/10.1034/j.1600-0889.49.issue4.6.x, 1997. 4. Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C.,
Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH<sub>4</sub> in the first decade of the 21st century: Inverse modeling
analysis using SCIAMACHY satellite retrievals and NOAA surface measurements,
J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013. 5. Berglen, T., Berntsen, T., Isaksen, I., and Sundet, J.: A global model of the
coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, J.
Geophys. Res.-Atmos., 109, D19310, https://doi.org/10.1029/2003JD003948, 2004.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|