Lanthanum, cerium, praseodymium and yttrium in waters in an upland acidic and acid sensitive environment, mid-Wales

Author:

Nea C.

Abstract

Abstract. The less than 0.45 mm filterable lanthanum (La), cerium (Ce), praseodymium (Pr) and yttrium (Y) concentrations in rainfall, cloud water, stream and groundwater in the upper River Severn catchments of mid-Wales are presented, based on up to ten years of weekly data. Results show that for rainfall, there is enrichment in the rare earth (RE) elements, especially under conditions of small volume of catch. However, within the correlations, there is a 'forked' relationship, with one line of high La, Ce and Pr with low Y, corresponding to clear pollutant events and the other with relatively low La, Ce and Pr and higher Y to background conditions. Cloud water and stream waters show a simpler relationship indicating two types of source. Cloud, stream and ground water show no split in pattern, with singular linear relationships between the rare La, Ce, Pr and Y. However, in many cases the monitoring of the streams and groundwaters post-dates the rainfall period with high pollutant Ce inputs. RE element concentrations vary systematically, in general decreasing with increasing volume of catch for cloud-water. For the streams, occasionally, there are relatively high Ce and La concentrations (up to about a tenth the maximum in rainfall), which occur in the same year as the corresponding high values in rainfall. Apart from these anomalous periods, RE element concentrations increase with decreasing pH and increasing aluminium concentrations; RE elements are mobilised under acidic conditions. The river waters are particularly enriched in Y relative to La, Ce and Pr, both in terms of average concentrations and values normalised to standard continental shales. The RE element level in the streams is variable and seems to be linked to the main soil types within the catchment; gleys in particular show higher concentrations than their peat and podzolic counterparts. On average, groundwaters are enriched in the RE elements relative to the stream but the link with pH and aluminium observed in the stream is much weaker.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3