Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition

Author:

Sepulcre S.,Vidal L.,Tachikawa K.,Rostek F.,Bard E.

Abstract

Abstract. By reconstructing past hydrologic variations in the Northern Caribbean Sea and their influence on the stability of the Atlantic Meridional Overturning Circulation (AMOC) during the last 940 ka, we seek to document climate changes in this tropical area in response to the Mid-Pleistocene Transition (MPT). Using core MD03-2628, we estimated past changes in sea surface salinity (SSS) using Δδ18O, the difference between the modern, and the past δ18O of seawater (obtained by combining alkenone thermometer data with the δ18O of the planktonic foraminifera Globigerinoides rube (white) and corrected for ice-sheet volume effects). Today, the lowest SSS values in the area studied are associated with the northernmost location of the Inter-Tropical Convergence Zone (ITCZ). The Δδ18O record obtained from core MD03-2628 exhibits glacial/interglacial cyclicity with higher values during all glacial periods spanning the last 940 ka, indicating increased SSS. A long-term trend was also observed in the Δδ18O values that exhibited a shift toward lower values for interglacial periods during the last 450 ka, as compared to interglacial stages older than 650 ka. A rise in SSS during glacial stages may be related to the southernmost location of the ITCZ, which is induced by a steeper cross-equator temperature gradient and associated with reduced northward cross-equatorial oceanic transport. Therefore, the results suggest a permanent link between the tropical salinity budget and the AMOC during the last 940 ka. Following the MPT, lower salinities during the last five interglacial stages indicated a northernmost ITCZ location that was forced by changes in the cross-equator temperature gradient and that was associated with the poleward position of Southern Oceanic Fronts that amplify the transport of heat and moisture to the North Atlantic. These processes may have contributed to the amplification of the climate cycles that followed the MPT.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3