Equatorial transport as diagnosed from nitrous oxide variability

Author:

Ricaud P.,Pommereau J.-P.,Attié J.-L.,Le Flochmoën E.,El Amraoui L.,Teyssèdre H.,Peuch V.-H.,Feng W.,Chipperfield M. P.

Abstract

Abstract. The mechanisms of transport on annual, semi-annual and quasi-biennial time scales in the equatorial (10° S–10° N) stratosphere are investigated using the nitrous oxide (N2O) measurements of the space-borne ODIN Sub-Millimetre Radiometer instrument from November 2001 to June 2005, and the simulations of the three-dimensional Chemistry Transport Models MOCAGE and SLIMCAT. Both models are forced with analyses from the European Centre for Medium-range Weather Forecasts, but the vertical transport is derived either from the forcing analyses by solving the continuity equation (MOCAGE), or from diabatic heating rates using a radiation scheme (SLIMCAT). The N2O variations in the mid-to-upper stratosphere at levels above 32 hPa are shown to be generally captured by the models though significant differences appear with the observations as well as between the models, attributed to the difficulty of capturing correctly the slow vertical velocities of the Brewer-Dobson circulation. In the lower stratosphere (LS), below 32 hPa, the variations are shown to be principally seasonal with peak amplitude at 400 K (~19 km), and are totally missed by the models. The decrease in diabatic radiative heating in the LS during the Northern Hemisphere summer is found to be out of phase by one month and far too small to explain the observed N2O seasonal cycle. The proposed explanation for this annual variation is a combination of i) the annual cycle of tropopause height of 1 km amplitude, ii) the convective overshooting above 400 K peaking in May and absent in the models, and iii) an annual cycle of 15 ppbv amplitude of the N2O concentration at the tropopause, but for which no confirmation exists in the upper troposphere in the absence of global-scale measurements. The present study indicates i) a significant contribution of deep convective overshooting on the chemical composition of the LS at global scale up to 500 K, ii) a preferred region for that over the African continent, and iii) a maximum impact in May when the overshoot intensity is the largest and horizontal winds are the slowest.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3