Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study

Author:

O'Neill Cameron M.,Hogg Andrew McC.ORCID,Ellwood Michael J.,Opdyke Bradley N.,Eggins Stephen M.

Abstract

Abstract. We conduct a model–data analysis of the marine carbon cycle to understand and quantify the drivers of atmospheric CO2 concentration during the last glacial–interglacial cycle. We use a carbon cycle box model, “SCP-M”, combined with multiple proxy data for the atmosphere and ocean, to test for variations in ocean circulation and Southern Ocean biological export productivity across marine isotope stages spanning 130 000 years ago to the present. The model is constrained by proxy data associated with a range of environmental conditions including sea surface temperature, salinity, ocean volume, sea-ice cover and shallow-water carbonate production. Model parameters for global ocean circulation, Atlantic meridional overturning circulation and Southern Ocean biological export productivity are optimized in each marine isotope stage against proxy data for atmospheric CO2, δ13C and Δ14C and deep-ocean δ13C, Δ14C and CO32-. Our model–data results suggest that global overturning circulation weakened during Marine Isotope Stage 5d, coincident with a ∼ 25 ppm fall in atmospheric CO2 from the last interglacial period. There was a transient slowdown in Atlantic meridional overturning circulation during Marine Isotope Stage 5b, followed by a more pronounced slowdown and enhanced Southern Ocean biological export productivity during Marine Isotope Stage 4 (∼ −30 ppm). In this model, the Last Glacial Maximum was characterized by relatively weak global ocean and Atlantic meridional overturning circulation and increased Southern Ocean biological export productivity (∼ −20 ppm during MIS 3 and MIS 2). Ocean circulation and Southern Ocean biological export productivity returned to modern values by the Holocene period. The terrestrial biosphere decreased by 385 Pg C in the lead-up to the Last Glacial Maximum, followed by a period of intense regrowth during the last glacial termination and the Holocene (∼ 600 Pg C). Slowing ocean circulation, a colder ocean and to a lesser extent shallow carbonate dissolution contributed ∼ −70 ppm to atmospheric CO2 in the ∼ 100 000-year lead-up to the Last Glacial Maximum, with a further ∼ −15 ppm contributed during the glacial maximum. Our model results also suggest that an increase in Southern Ocean biological export productivity was one of the ingredients required to achieve the Last Glacial Maximum atmospheric CO2 level. We find that the incorporation of glacial–interglacial proxy data into a simple quantitative ocean transport model provides useful insights into the timing of past changes in ocean processes, enhancing our understanding of the carbon cycle during the last glacial–interglacial period.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3